soluble factor
Recently Published Documents


TOTAL DOCUMENTS

309
(FIVE YEARS 16)

H-INDEX

42
(FIVE YEARS 2)

Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6301
Author(s):  
Laura Patrussi ◽  
Nagaja Capitani ◽  
Cosima T. Baldari

Interleukin (IL)-9 is a soluble factor secreted by immune cells into the microenvironment. Originally identified as a mediator of allergic responses, IL-9 has been detected in recent years in several tumor niches. In solid tumors, it mainly promotes anti-tumor immune responses, while in hematologic malignancies, it sustains the growth and survival of neoplastic cells. IL-9 has been recently implicated in the pathogenesis of chronic lymphocytic leukemia; however, the molecular mechanisms underlying its contribution to this complex neoplasia are still unclear. Here, we summarize the current knowledge of IL-9 in the tumor microenvironment, with a focus on its role in the pathogenesis of chronic lymphocytic leukemia.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3301
Author(s):  
Go Ohe ◽  
Yasusei Kudo ◽  
Kumiko Kamada ◽  
Yasuhiro Mouri ◽  
Natsumi Takamaru ◽  
...  

(1) Background: OK-432 is a penicillin-killed, lyophilized formulation of a low-toxicity strain (Su) of Streptococcus pyogenes (Group A). It is a potent immunotherapy agent for several types of cancer, including oral cancer. We previously showed that (i) OK-432 treatment induces a high amount of IFN-? production from peripheral blood mononuclear cells (PBMCs), and (ii) conditioned medium (CM) from oral cancer cells suppresses both the IFN-? production and cytotoxic activity of PBMCs driven by OK-432. The aim of this study was to determine the inhibitory mechanism of OK-432-induced IFN-? production from PBMCs by CM. (2) Methods: We performed cDNA microarray analysis, quantitative RT-PCR, and ELISA to reveal the inhibitory mechanism of CM. (3) Results: We found that CD40 plays a key role in IFN-? production via IL-12 production. Although OK-432 treatment upregulated the expression levels of the IL-12p40, p35, and CD40 genes, CM from oral cancer cells downregulate these genes. The amount of IFN-? production by OK-432 treatment was decreased by an anti-CD40 neutralizing antibody. (4) Conclusions: Our study suggests that uncertain soluble factor(s) produced from oral cancer cells may inhibit IFN-? production from PBMCs via suppressing the CD40/CD40L–IL-12 axis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Moah Sohn ◽  
Hye Young Na ◽  
Hyun Soo Shin ◽  
Seul Hye Ryu ◽  
Sejung Park ◽  
...  

Dendritic cells (DCs) in peripheral tissues may have a unique role to regulate innate and adaptive immune responses to antigens that enter the tissues. Peritoneal cavity is the body compartment surrounding various tissues and organs and housing diverse immune cells. Here, we investigated the specialized features of classical DC (cDC) subsets following the intraperitoneal injection of a model antigen ovalbumin (OVA). Peritoneal cDC1s were superior to cDC2s in activating OVA-specific CD8 T cells, while both cDCs were similar in stimulating OVA-specific CD4 T cells. Each peritoneal cDC subset differentially regulated the homing properties of CD8 T cells. CD8 T cells stimulated by cDC1s displayed a higher level of lung-homing receptor CCR4, whereas those stimulated by cDC2s prominently expressed various homing receptors including gut-homing molecules CCR9 and α4β7. Also, we found that cDC1s played a dominating role over cDC2s in controlling the overall gene expression of CD8 T cells. Soluble factor(s) emanating from CD8 T cells stimulated by peritoneal cDC1s were responsible for mediating this dominance of cDC1s, and we identified IL-2 as a soluble factor regulating the global gene expression of T cells. Collectively, our study indicates that different peritoneal cDC subsets effectively diversify T cell responses by altering the level of cytokines, such as IL-2, in the milieu.


Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 116
Author(s):  
Joyce J.B.C. van Beers ◽  
Jan G.M.C. Damoiseaux

Over the years, a wide variety of therapeutic antibodies has been successfully introduced in the auto-immunology clinic, and many more are on the way. Many of these treatments address either a pathogenic circulating molecule or a cell-bound molecule. Whereas addressing the former target results in neutralization of the soluble factor and binding to the latter target either inhibits cellular function or induces selective cell death. If this targeted molecule or cell is part of the immune system, this therapy evokes a state of immunodeficiency with infections as a possible consequence. Therefore, immune monitoring is needed to prevent such adverse side effects of immunotherapy. In this paper, different immunotherapies used in Sjögren’s syndrome, as well as different approaches to monitoring the immune system, are discussed.


2021 ◽  
Vol 16 (5) ◽  
pp. 974
Author(s):  
Ken Arai ◽  
Gen Hamanaka ◽  
KellyK Chung

2020 ◽  
Vol 49 (1) ◽  
pp. 15-15
Author(s):  
James Williams ◽  
Rhonda Jones ◽  
Erin Stoneman ◽  
Patrick Lahni ◽  
Brian Varisco
Keyword(s):  

Blood ◽  
2020 ◽  
Author(s):  
Laura Patrussi ◽  
Noemi Manganaro ◽  
Nagaja Capitani ◽  
Cristina Ulivieri ◽  
Vanessa Tatangelo ◽  
...  

The stromal microenvironment is central to chronic lymphocytic leukemia (CLL) pathogenesis. How leukemic cells condition the stroma to enhance its chemoattractant properties remains elusive. Here we show that mouse and human CLL cells promote the contact-independent stromal expression of homing chemokines. This function was strongly enhanced in leukemic cells from Em-TCL1 mice lacking the pro-oxidant p66Shc adaptor, which develop an aggressive disease with organ infiltration. We identified Interleukin (IL) -9 as the soluble factor, negatively modulated by p66Shc, responsible for the chemokine-elevating activity of leukemic cells on stromal cells. IL-9 blockade in Em-TCL1/p66Shc-/- mice resulted in a decrease in the nodal expression of homing chemokines, which correlated with decreased leukemic cell invasiveness. IL-9 levels were found to inversely correlate with residual p66Shc in the p66Shc-deficient human CLL cells (n=52 patients). p66Shc reconstitution in CLL cells normalized IL-9 expression and neutralized their chemokine-elevating activity. Notably, high IL-9 expression in CLL cells directly correlates with lymphadenopathy, liver infiltration, disease severity and overall survival, emerging as an independent predictor of disease outcome. Our results demonstrate that IL-9 modulates the chemokine landscape in the stroma, and that p66Shc, by regulating IL-9 expression, tunes the ability of leukemic cells to shape the microenvironment, thereby contributing to CLL pathogenesis.


2020 ◽  
Author(s):  
Samuel B. Berry ◽  
Maia S. Gower ◽  
Xiaojing Su ◽  
Chetan Seshadri ◽  
Ashleigh B. Theberge

AbstractTuberculosis (TB) is one of the most potent infectious diseases in the world, causing more deaths than any other single infectious agent. TB infection is caused by inhalation of Mycobacterium tuberculosis (Mtb) and subsequent phagocytosis and migration into the lung tissue by innate immune cells (e.g., alveolar macrophages, neutrophils, dendritic cells), resulting in the formation of a fused mass of immune cells known as the granuloma. Considered the pathological hallmark of TB, the granuloma is a complex microenvironment that is crucial for pathogen containment as well as pathogen survival. Disruption of the delicate granuloma microenvironment via numerous stimuli, such as variations in cytokine secretions, nutrient availability, and the makeup of immune cell population, can lead to an active infection. Herein, we present a novel in vitro model to examine the soluble factor signaling between a mycobacterial infection and its surrounding environment. Adapting a newly developed suspended microfluidic platform, known as Stacks, we established a modular microscale infection model containing human immune cells and a model mycobacterial strain that can easily integrate with different microenvironmental cues through simple spatial and temporal “stacking” of each module of the platform. We validate the establishment of suspended microscale (4 μL) infection cultures that secrete increased levels of proinflammatory factors IL-6, VEGF, and TNFα upon infection and form 3D aggregates (granuloma model) encapsulating the mycobacteria. As a proof of concept to demonstrate the capability of our platform to examine soluble factor signaling, we cocultured an in vitro angiogenesis model with the granuloma model and quantified morphology changes in endothelial structures as a result of culture conditions (P < 0.05 when comparing infected vs. uninfected coculture systems). We envision our modular in vitro granuloma model can be further expanded and adapted for studies focusing on the complex interplay between granulomatous structures and their surrounding microenvironment, as well as a complementary tool to augment in vivo signaling and mechanistic studies.


Sign in / Sign up

Export Citation Format

Share Document