Modified cell proliferation due to electrical currents

1992 ◽  
Vol 30 (4) ◽  
pp. CE21-CE28 ◽  
Author(s):  
L. Vodovnik ◽  
D. Miklavčič ◽  
G. Serša
Author(s):  
C. W. Kischer

The morphology of the fibroblasts changes markedly as the healing period from burn wounds progresses, through development of the hypertrophic scar, to resolution of the scar by a self-limiting process of maturation or therapeutic resolution. In addition, hypertrophic scars contain an increased cell proliferation largely made up of fibroblasts. This tremendous population of fibroblasts seems congruous with the abundance of collagen and ground substance. The fine structure of these cells should reflect some aspects of the metabolic activity necessary for production of the scar, and might presage the stage of maturation.A comparison of the fine structure of the fibroblasts from normal skin, different scar types, and granulation tissue has been made by transmission (TEM) and scanning electron microscopy (SEM).


Author(s):  
Venita F. Allison

In 1930, Moore, Hughes and Gallager reported that after castration seminal vesicle epithelial cell atrophy occurred and that cell regeneration could be achieved with daily injections of testis extract. Electron microscopic studies have confirmed those observations and have shown that testosterone injections restore the epithelium of the seminal vesicle in adult castrated male rats. Studies concerned with the metabolism of androgens point out that dihydrotestosterone stimulates cell proliferation and that other metabolites of testosterone probably influence secretory function in certain target cells.Although the influence of androgens on adult seminal vesicle epithelial cytology is well documented, little is known of the effect of androgen depletion and replacement on those cells in aging animals. The present study is concerned with the effect of castration and testosterone injection on the epithelium of the seminal vesicle of aging rats.


Author(s):  
S.S. Poolsawat ◽  
C.A. Huerta ◽  
S.TY. Lae ◽  
G.A. Miranda

Introduction. Experimental induction of altered histology by chemical toxins is of particular importance if its outcome resembles histopathological phenomena. Hepatotoxic drugs and chemicals are agents that can be converted by the liver into various metabolites which consequently evoke toxic responses. Very often, these drugs are intentionally administered to resolve an illness unrelated to liver function. Because of hepatic detoxification, the resulting metabolites are suggested to be integrated into the macromolecular processes of liver function and cause an array of cellular and tissue alterations, such as increased cytoplasmic lysis, centrilobular and localized necroses, chronic inflammation and “foam cell” proliferation of the hepatic sinusoids (1-4).Most experimentally drug-induced toxicity studies have concentrated primarily on the hepatic response, frequently overlooking other physiological phenomena which are directly related to liver function. Categorically, many studies have been short-term effect investigations which seldom have followed up the complications to other tissues and organs when the liver has failed to function normally.


Author(s):  
P.T. Nguyen ◽  
C. Uphoff ◽  
C.L. Stinemetz

Considerable evidence suggest that the calcium-binding protein calmodulin (CaM) may mediate calcium action and/or transport important in the gravity response of plants. Calmodulin is present in both shoots and roots and is capable of regulating calcium transport in plant vesicles. In roots calmodulin is concentrated in the tip, the gravisensing region of the root; and is reported to be closely associated with amyloplasts, organelles suggested to play a primary role in gravi-perception. Inhibitors of CaM such as chlorpromazine, calmidazolium, and compound 48/80 interfere with the gravitropic response of both snoots and roots. The magnitude of the inhibition corresponded well with the extent to which the drug binds to endogenous CaM. Compound 48/80 and calmidazolium block gravi-induced changes in electrical currents across root tips, a phenomenon thought to be associated with the sensing of the gravity stimulus.In this study, we have investigated the subcellular distribution of CaM in graviresponsive and non-graviresponsive root caps of the maize cultivar Merit.


2010 ◽  
Vol 34 (8) ◽  
pp. S50-S50
Author(s):  
Jing Li ◽  
Dongxia Hao ◽  
Weiwei Deng ◽  
Na Li ◽  
Shai Guo ◽  
...  

Nephrology ◽  
2000 ◽  
Vol 5 (3) ◽  
pp. A104-A104
Author(s):  
Jandeleit‐Dahm K ◽  
Wu Ll ◽  
Johnson Rj ◽  
Cox Aj ◽  
Kelly Dj ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A502-A502
Author(s):  
T NODA ◽  
R IWAKIRI ◽  
K FUJIMOTO ◽  
T AW

Sign in / Sign up

Export Citation Format

Share Document