Analysis to the stress construction at the vicinity of crack tip for mode I fracture in 3-D state using finite element method

1988 ◽  
Vol 9 (6) ◽  
pp. 603-610
Author(s):  
Chen Xiao-ming ◽  
Guan Zhong-xin ◽  
Zhuang Jia-lin
Author(s):  
Z. X. Wang ◽  
H. M. Li ◽  
Y. J. Chao ◽  
P. S. Lam

Finite element method was used to analyze the three-point bend experimental data of A533B-1 pressure vessel steel obtained by Sherry, Lidbury, and Beardsmore [1] from −160 to −45 °C within the ductile-brittle transition regime. As many researchers have shown, the failure stress (σf) of the material could be approximated as a constant. The characteristic length, or the critical distance (rc) from the crack tip, at which σf is reached, is shown to be temperature dependent based on the crack tip stress field calculated by the finite element method. With the J-A2 two-parameter constraint theory in fracture mechanics, the fracture toughness (JC or KJC) can be expressed as a function of the constraint level (A2) and the critical distance rc. This relationship is used to predict the fracture toughness of A533B-1 in the ductile-brittle transition regime with a constant σf and a set of temperature-dependent rc. It can be shown that the prediction agrees well with the test data for wide range of constraint levels from shallow cracks (a/W = 0.075) to deep cracks (a/W = 0.5), where a is the crack length and W is the specimen width.


2013 ◽  
Vol 2013 ◽  
pp. 1-13
Author(s):  
Xia Xiaozhou ◽  
Zhang Qing ◽  
Wang Hong ◽  
Jiang Qun

In the frame of the extended finite element method, the exponent disconnected function is introduced to reflect the discontinuous characteristic of crack and the crack tip enrichment function which is made of triangular basis function, and the linear polar radius function is adopted to describe the displacement field distribution of elastoplastic crack tip. Where, the linear polar radius function form is chosen to decrease the singularity characteristic induced by the plastic yield zone of crack tip, and the triangle basis function form is adopted to describe the displacement distribution character with the polar angle of crack tip. Based on the displacement model containing the above enrichment displacement function, the increment iterative form of elastoplastic extended finite element method is deduced by virtual work principle. For nonuniform hardening material such as concrete, in order to avoid the nonsymmetry characteristic of stiffness matrix induced by the non-associate flowing of plastic strain, the plastic flowing rule containing cross item based on the least energy dissipation principle is adopted. Finally, some numerical examples show that the elastoplastic X-FEM constructed in this paper is of validity.


2017 ◽  
Vol 754 ◽  
pp. 206-209 ◽  
Author(s):  
Lucie Malíková ◽  
Stanislav Seitl

A simplified model of a crack approaching a bi-material interface is modelled by means of the finite element method in order to investigate the significance of the higher-order terms of the Williams expansion for the proper approximation of the opening crack-tip stress near the bi-material interface. The discussion on results is presented and the importance of the higher-order terms proved.


2012 ◽  
Vol 50 (5) ◽  
pp. 591-601 ◽  
Author(s):  
G. Hattori ◽  
R. Rojas-Díaz ◽  
A. Sáez ◽  
N. Sukumar ◽  
F. García-Sánchez

Sign in / Sign up

Export Citation Format

Share Document