Limit theorems for the maximal eigenvalues of the mean-field Hamiltonian with random potential

1999 ◽  
Vol 39 (2) ◽  
pp. 117-133 ◽  
Author(s):  
A. Astrauskas
2018 ◽  
Vol 26 (3) ◽  
pp. 163-174 ◽  
Author(s):  
Mariya Bessonov ◽  
Stanislav Molchanov ◽  
Joseph Whitmeyer

Abstract We extend our earlier mean field approximation of the Bolker–Pacala model of population dynamics by dividing the population into N classes, using a mean field approximation for each class but also allowing migration between classes as well as possibly suppressive influence of the population of one class over another class. For {N\geq 2} , we obtain one symmetric nontrivial equilibrium for the system and give global limit theorems. For {N=2} , we calculate all equilibrium solutions, which, under additional conditions, include multiple nontrivial equilibria. Lastly, we prove geometric ergodicity regardless of the number of classes when there is no population suppression across the classes.


2012 ◽  
Vol 11 ◽  
pp. 120-126 ◽  
Author(s):  
AYAN KHAN

Of late, the study of BCS-BEC crossover in the presence of weak random impurity is an interesting issue. In this proceedings we study the effect of this disorder which is included through the Nozières and Smith-Rink theory of superconducting fluctuations. In the weak regime, the random potential leaves an effect on the superconducting order parameter but it spares the chemical potential. Here we present the exact behavior of the mean field quantities as a function of the disorder by self-consistently solving the coupled equations.


Author(s):  
Kay Kirkpatrick ◽  
Simone Rademacher ◽  
Benjamin Schlein

AbstractWe consider the many-body quantum evolution of a factorized initial data, in the mean-field regime. We show that fluctuations around the limiting Hartree dynamics satisfy large deviation estimates that are consistent with central limit theorems that have been established in the last years.


1992 ◽  
Vol 03 (supp01) ◽  
pp. 195-200 ◽  
Author(s):  
SILVIO FRANZ ◽  
MARC MÉZARD ◽  
GIORGIO PARISI

We discuss some of the problems appearing in the Mean Field Theory of Random Heteropolymers. We show how an hypothesis of replica symmetry maps this problem onto a directed polymer in a random potential, and explain how this hypothesis can be checked through numerical simulations on directed polymers. The approach of Shaknovitch and Gutin is also reviewed in light of these findings.


Author(s):  
Klaus Morawetz

The classical non-ideal gas shows that the two original concepts of the pressure based of the motion and the forces have eventually developed into drift and dissipation contributions. Collisions of realistic particles are nonlocal and non-instant. A collision delay characterizes the effective duration of collisions, and three displacements, describe its effective non-locality. Consequently, the scattering integral of kinetic equation is nonlocal and non-instant. The non-instant and nonlocal corrections to the scattering integral directly result in the virial corrections to the equation of state. The interaction of particles via long-range potential tails is approximated by a mean field which acts as an external field. The effect of the mean field on free particles is covered by the momentum drift. The effect of the mean field on the colliding pairs causes the momentum and the energy gains which enter the scattering integral and lead to an internal mechanism of energy conversion. The entropy production is shown and the nonequilibrium hydrodynamic equations are derived. Two concepts of quasiparticle, the spectral and the variational one, are explored with the help of the virial of forces.


2000 ◽  
Vol 61 (17) ◽  
pp. 11521-11528 ◽  
Author(s):  
Sergio A. Cannas ◽  
A. C. N. de Magalhães ◽  
Francisco A. Tamarit

Sign in / Sign up

Export Citation Format

Share Document