Membrane action, deflections and cracking of two-way reinforced concrete slabs

1978 ◽  
Vol 11 (3) ◽  
pp. 205-206
Author(s):  
M. W. Braestrup
2021 ◽  
Author(s):  
Andreia Romero Fanton ◽  
Luiz Carlos de Almeida ◽  
Leandro Mouta Trautwein

<p>The emergence of tensile membrane action as a key load-carrying mechanism has increased experimental and numerical studies on the fire performance of concrete slabs since 2000, however, the different behaviour due to aggregate type is less studied in slabs numerical analysis. This paper presents a numerical analysis of the thermomechanical behaviour of reinforced concrete slabs exposed to fire, using Finite Element Modelling in ATENA and GiD. Results were validated against experimental data from the literature subjecting slabs to ISO834 and hydrocarbon time- temperature curves. 3 calibration steps were done to combine mechanical and thermal behaviours. A parametric analysis was carried out with calcareous and siliceous aggregates to provide information for safer slab design and consequent fewer accidents related to fire situation. The choice of aggregate type must always be considered in design.</p>


2020 ◽  
Vol 310 ◽  
pp. 00056
Author(s):  
Miroslaw Wieczorek

The aim of the paper was to demonstrate the influence of reinforced steel parameters and quantity on the failure mechanism of four three-span models of reinforced concrete strips with the dimensions 7140×500×190 mm. Two models had only bottom reinforcement, while two were reinforced at the bottom and upper sides. The paper contains the description of the experimental stand and models along with the results of experimental tests which were compared with the results of the calculations based on traditional methods.


Sign in / Sign up

Export Citation Format

Share Document