How the state of stress and fissuring of a rock mass affects the speed of propagation of elastic waves

1970 ◽  
Vol 6 (2) ◽  
pp. 154-158
Author(s):  
V. I. Panin ◽  
I. A. Turchaninov
1981 ◽  
Vol 18 (2) ◽  
pp. 195-204 ◽  
Author(s):  
R. Heystee ◽  
J.-C. Roegiers

Recent laboratory hydraulic fracturing experiments have shown that fluid penetration into the rock mass adjacent to the borehole being pressurized has a significant influence on the magnitude of the breakdown pressure. One factor affecting the degree of penetration of the pressurizing fluid is the permeability of the rock mass, which in turn is a function of the state of stress present in the rock mass. To study this permeability–stress relationship, a radial permeameter was constructed and three rock types tested. Derived expressions show that during radially divergent and convergent flow in the permeameter, the state of stress in the rock specimen is tensile and compressive respectively. The radial permeameter test results show that the permeability of rock increases significantly under tensile stress conditions and reduces under compressive stress conditions. The results from this study were used to develop a conceptual model which explains the dependency of breakdown pressure levels on the pressurization rate.


1975 ◽  
Vol 11 (6) ◽  
pp. 647-650
Author(s):  
B. V. Vlasenko ◽  
F. M. Érlikhman

2011 ◽  
Vol 42 ◽  
pp. 117-124
Author(s):  
Krishna Kanta Panthi

Determination of in-situ stresses in the rock mass is necessary for stability assessment and proper design of underground openings. It is important to know the state of stress surrounding the opening so that right and optimum rock support is assigned as preliminary and permanent rock support. However, the majority of long tunnels with high rock cove r face severe tunnel instability problems related to rock stresses. The headrace tunnel of Parbati II hydroelectric project is one of such tunnels, especially the tunnel segment passing through Manikaran quartzite. It is known fact that the extent and type of stress induced instability vary greatly upon rock type, deformability properties, jointing and inter-bedding characteristics in the rock mass. This paper back calculates the state of stress using Phase 2  finite element model  in a TBM  bored segment of  the tunnel and  also briefly reviews mechanical properties of the  intact rock that may have direct link on the  nature of stress induced  instability. It is believed that back calculated stress magnitude may be useful for the stability assessment in other segment of headrace tunnel.


2009 ◽  
Vol 19 (10) ◽  
pp. 3561-3565 ◽  
Author(s):  
FELIPE BARRA ◽  
ANDRES CARU ◽  
MARIA TERESA CERDA ◽  
RODRIGO ESPINOZA ◽  
ALEJANDRO JARA ◽  
...  

Dislocations in a material will, when present in enough numbers, change the speed of propagation of elastic waves. Consequently, two material samples, differing only in dislocation density, will have different elastic constants, a quantity that can be measured using Resonant Ultrasound Spectroscopy. Measurements of this effect on aluminum samples are reported. They compare well with the predictions of the theory.


Sign in / Sign up

Export Citation Format

Share Document