pressurization rate
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 14)

H-INDEX

9
(FIVE YEARS 2)

Author(s):  
F. Ciardo ◽  
A. P. Rinaldi

AbstractFluid injection into underground formations reactivates preexisting geological discontinuities such as faults or fractures. In this work, we investigate the impact of injection rate ramp-up present in many standard injection protocols on the nucleation and potential arrest of dynamic slip along a planar pressurized fault. We assume a linear increasing function of injection rate with time, up to a given time $$t_c$$ t c after which a maximum value $$Q_m$$ Q m is achieved. Under the assumption of negligible shear-induced dilatancy and impermeable host medium, we solve numerically the coupled hydro-mechanical model and explore the different slip regimes identified via scaling analysis. We show that in the limit when fluid diffusion time scale $$t_w$$ t w is much larger than the ramp-up time scale $$t_c$$ t c , slip on an ultimately stable fault is essentially driven by pressurization at constant rate. Vice versa, in the limit when $$t_c/t_w \gg 1$$ t c / t w ≫ 1 , the pressurization rate, quantified by the dimensionless ratio $$\dfrac{Q_m t_w}{t_c Q^*}$$ Q m t w t c Q ∗ with $$Q^*$$ Q ∗ being a characteristic injection rate scale, does impact both nucleation time and arrest distance of dynamic slip. Indeed, for a given initial fault loading condition and frictional weakening property, lower pressurization rates delay the nucleation of a finite-sized dynamic event and increase the corresponding run-out distance approximately proportional to $$\propto \left( \dfrac{Q_m t_w}{t_c Q^*}\right) ^{-0.472}$$ ∝ Q m t w t c Q ∗ - 0.472 . On critically stressed faults, instead, the ramp-up of injection rate activates quasi-static slip which quickly turn into a run-away dynamic rupture. Its nucleation time decreases non-linearly with increasing value of $$\dfrac{Q_m t_w}{t_c Q^*}$$ Q m t w t c Q ∗ and it may precede (or not) the one associated with fault pressurization at constant rate only.


2021 ◽  
Author(s):  
Ayman Al-Nakhli ◽  
Zeeshan Tariq ◽  
Mohamed Mahmoud

Abstract Unconventional and tight gas reservoirs are located in deep and competent formations, which requires massive fracturing activities to extract hydrocarbons. Some of the persisting challenges faced by operators are either canceled or non-productive fractures. Both challenges force oil companies to drill new substitutional wells, which will increase the development cost of such reservoirs. A novel fracturing method was developed based on thermochemical pressure pulse. Reactive material of exothermic components are used to generate in-situ pressure pulse, which is sufficient to create fractures. The reaction can vary from low pressure pulse, to a very high loading up to 20,000 psi, with short pressurization time. In this study, Finite Element Modeling (FEM) was used to investigate the impact of the generated pressure-pulse load, by chemical reaction, on the number of induced fractures and fracture length. Actual tests of pulsed fracturing conducted in lab scale using several block samples compared with modeling work. There was a great relationship between the pressure load and fracturing behavior. The greater the pulse load and pressurization rate, the greater the number of created fractures, and the longer the induced fractures. The developed novel fracturing method will increase stimulated reservoir volume of unconventional gas without introducing a lot of water to formation. Moreover, the new method can reduce formation breakdown pressure by around 70%, which will minimize number of canceled fracturing.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3366
Author(s):  
Xiaohang Ma ◽  
Wanjun Zhao ◽  
Wei Le ◽  
Jianxin Li ◽  
Pengwan Chen ◽  
...  

In this study, we studied the synergetic effect of potassium oxysalts on combustion and ignition of nano aluminum (Al) and nano copper oxide (CuO) composites. Potassium periodate (KIO4) and potassium perchlorate (KClO4) are good oxidizers with high oxygen content and strong oxidizability. Different contents of KIO4 and KClO4 were added to nano Al/CuO and the composites were assembled by sonication. When the peak pressure of nano Al/CuO was increased ~5–13 times, the pressurization rate was improved by ~1–3 orders of magnitude, the ignition delay time was shortened by ~0.08 ms–0.52 ms and the reaction completeness was adjustable when 30–70% KIO4 and KClO4 were added into the composites. The reaction of Al/KIO4 and Al/KClO4 at a lower temperature was helpful to ignite the ternary composite. Meanwhile, CuO significantly reduced the peak temperature of oxygen released from the decomposition of KIO4 and KClO4. The synergetic effect of binary oxidizers made the combustion performance of the ternary composites better than that of the binary composites. The present work indicates that KIO4 and KClO4 are promising additives for nano Al/CuO to tune and promote the combustion performance. The ternary composites have potential application in energy devices and combustion apparatus.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1509
Author(s):  
Yongjin Chen ◽  
Shuhong Ba ◽  
Hui Ren

In order to solve the problems of the complicated forming process, poor adaptability, low safety, and high cost of special-shaped energetic grains, light-curing 3D printing technology was applied to the forming field of energetic grains, and the feasibility of 3D printing (additive manufacturing) complex special-shaped energetic grains was explored. A photocurable resin was developed. A demonstration formula of a 3D printing energetic slurry composed of 41 wt% ultra-fine ammonium perchlorate (AP), 11 wt% modified aluminum (Al), and 48 wt% photocurable resin was fabricated. The special-shaped energetic grains were successfully 3D printed based on light-curing 3D printing technology. The optimal printing parameters were obtained. The microstructure, density, thermal decomposition, combustion performance, and mechanical properties of the printed grain were characterized. The microstructure of the grain shows that the surface of the grain is smooth, the internal structure is dense, and there are no defects. The average density is 1.606 g·cm−3, and the grain has good uniformity and stability. The thermal decomposition of the grain shows that it can be divided into three stages: endothermic, exothermic, and secondary exothermic, and the Al of the grain has a significant catalytic effect on the thermal decomposition of AP. The combustion performance of the grain shows that a uniform flame with a one-way jet is produced, and the average burning rate is 5.11 mm·s−1. The peak pressure of the sample is 45.917 KPa, and the pressurization rate is 94.874 KPa·s−1. The analysis of the mechanical properties shows that the compressive strength is 9.83 MPa and the tensile strength is 8.78 MPa.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2984
Author(s):  
Wenxia Jia ◽  
Ranran Zhuo ◽  
Mingkun Xu ◽  
Jiaxiang Lin ◽  
Xiaoting Li ◽  
...  

Using a homemade pressure device, we explored the synergistic effect of pressurization rate and β-form nucleating agent (β-NA) on the crystallization of an isotactic polypropylene (iPP) melt. The obtained samples were characterized by combining small angle X-ray scattering and synchrotron wide angle X-ray diffraction. It was found that the synergistic application of pressurization and β-NA enables the preparation of a unique multi-phase crystallization of iPP, including β-, γ- and/or mesomorphic phases. Pressurization rate plays a crucial role on the formation of different crystal phases. As the pressurization rate increases in a narrow range between 0.6–1.9 MPa/s, a significant competitive formation between β- and γ-iPP was detected, and their relative crystallinity are likely to be determined by the growth of the crystal. When the pressurization rate increases further, both β- and γ-iPP contents gradually decrease, and the mesophase begins to emerge once it exceeds 15.0 MPa/s, then mesomorphic, β- and γ- iPP coexist with each other. Moreover, with different β-NA contents, the best pressurization rate for β-iPP growth is the same as 1.9 MPa/s, while more β-NA just promotes the content of β-iPP under the rates lower than 1.9 MPa/s. In addition to inducing the formation of β-iPP, it shows that β-NA can also significantly promote the formation of γ-iPP in a wide pressurization rate range between 3.8 to 75 MPa/s. These results were elucidated by combining classical nucleation theory and the growth theory of different crystalline phases, and a theoretical model of the pressurization-induced crystallization is established, providing insight into understanding the multi-phase structure development of iPP.


2021 ◽  
Author(s):  
S.B. Vishnu ◽  
Biju T. Kuzhiveli

The cryogenic propulsion era started with the use of liquid rockets. These rocket engines use propellants in liquid form with reasonably high density, allowing reduced tank size with a high mass ratio. Cryogenic engines are designed for liquid fuels that have to be held in liquid form at cryogenic temperature and gas at normal temperatures. Since propellants are stored at their boiling temperature or subcooled condition, minimal heat infiltration itself causes thermal stratification and self-pressurization. Due to stratification, the state of propellant inside the tank varies, and it is essential to keep the propellant properties in a predefined state for restarting the cryogenic engine after the coast phase. The propellant’s condition at the inlet of the propellant feed system or turbo pump must fall within a narrow range. If the inlet temperature is above the cavitation value, cavitation will likely to happen to result in the probable destruction of the flight vehicle. The present work aims to find an effective method to reduce the stratification phenomenon in a cryogenic storage tank. From previous studies, it is observed that the shape of the inner wall surface of the storage tank plays an essential role in the development of the stratified layer. A CFD model is established to predict the rate of self-pressurization in a liquid hydrogen container. The Volume of Fluid (VOF) method is used to predict the liquid–vapor interface movement, and the Lee phase change model is adopted for evaporation and condensation calculations. A detailed study has been conducted on a cylindrical storage tank with an iso grid and rib structure. The development of the stratified layer in the presence of iso grid and ribs are entirely different. The buoyancy-driven free convection flow over iso grid structure result in velocity and temperature profile that differs significantly from a smooth wall case. The thermal boundary layer was always more significant for iso grid type obstruction, and these obstructions induces streamline deflection and recirculation zones, which enhances heat transfer to bulk liquid. A larger self-pressurization rate is observed for tanks with an iso grid structure. The presence of ribs results in the reduction of upward buoyancy flow near the tank surface, whereas streamline deflection and recirculation zones were also perceptible. As the number of ribs increases, it nullifies the effect of the formation of recirculation zones. Finally, a maximum reduction of 32.89% in the self-pressurization rate is achieved with the incorporation of the rib structure in the tank wall.


2021 ◽  
Author(s):  
Federico Ciardo ◽  
Antonio Pio Rinaldi

Fluid injection into underground formations reactivates preexisting geological discontinuities such as faults or fractures. In this work, we investigate the impact of injection rate ramp-up present in many standard injection protocols on the nucleation and potential arrest of dynamic slip along a planar pressurized fault. We assume a linear increasing function of injection rate with time, up to a given time tc after which a maximum value Qm is achieved. Under the assumption of negligible shear-induced dilatancy and impermeable host medium, we solve numerically the coupled hydro-mechanical model and explore the different slip regimes identified via scaling analysis. We show that in the limit when fluid diffusion time scale tw is much larger than the ramp-up time scale tc, slip on an ultimately stable fault is essentially driven by pressurization at constant rate. Vice versa, in the limit when tc/tw ≫ 1, the pressurization rate, quantified by the dimensionless ratio (Qm tw / tc Q∗), does impact both nucleation time and arrest distance of dynamic slip. Indeed, for a given initial fault loading condition and frictional weakening property, lower pressurization rates delay the nucleation of a finite-sized dynamic event and increase the corresponding run-out distance approximately proportional to (Qm tw / tc Q∗)^(-0.472). On critically stressed faults, instead, the ramp-up of injection rate activates quasi-static slip which quickly turn into a run-away dynamic rupture. Its nucleation time decreases non-linearly with increasing value of (Qm tw / tc Q∗) and it may precede (or not) the one associated with fault pressurization at constant rate only.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xinyao Wang ◽  
Quanchen Gao ◽  
Xiao Li ◽  
Dianzhu Liu

Fluid injection-induced earthquakes have been a scientific and social issue of wide concern, and fluid pressurization rate may be an important inducement. Therefore, a series of stepwise and conventional injection-induced shear tests were carried out under different fluid pressurization rates and effective normal stresses. The results show that the magnitude of fluid pressure is the main factor controlling the initiation of fracture slipping. The contribution of fluid pressure heterogeneity and permeability evolution on the initiation of fracture slipping is different with the increase of fluid pressurization rate. When the fluid pressurization rate is small, permeability evolution plays a dominant role. On the contrary, the fluid pressure heterogeneity plays a dominant role. The increase of fluid pressurization rate may lead to the transition from creep slip mode to slow stick-slip mode. Under the laboratory scale, the fluid pressure heterogeneity causes the coulomb failure stress to increase by about one times than the predicted value at the initiation of fracture slipping, and the coulomb stress increment threshold of 1.65 MPa is disadvantageous to the fracture stability.


2021 ◽  
Author(s):  
Ayman Al-Nakhli ◽  
Zeeshan Tariq ◽  
Mohamed Mahmoud ◽  
Abdulazeez Abdulraheem

Abstract Unconventional and tight gas reservoirs are located in deep and competent formations, which requires massive fracturing activities to extract hydrocarbons. Some of the persisting challenges faced by operators are either canceled or non-productive fractures. Both challenges force oil companies to drill new substitutional wells, which will increase the development cost of such reservoirs. A novel fracturing method was developed based on thermochemical pressure pulse. Reactive material of exothermic components are used to generate in-situ pressure pulse, which is sufficient to create fractures. The reaction can vary from low pressure pulse, to a very high loading up to 20,000 psi, with short pressurization time. In this study, Finite Element Modeling (FEM) was used to investigate the impact of the generated pressure-pulse load, by chemical reaction, on the number of induced fractures and fracture length. Actual tests of pulsed fracturing conducted in lab scale using several block samples compared with modeling work. There was a great relationship between the pressure load and fracturing behavior. The greater the pulse load and pressurization rate, the greater the number of created fractures, and the longer the induced fractures. The developed novel fracturing method will increase stimulated reservoir volume of unconventional gas without introducing a lot of water to formation. Moreover, the new method can reduce formation breakdown pressure by around 70%, which will minimize number of canceled fracturing.


2021 ◽  
Author(s):  
Georg Dresen ◽  
Lei Wang ◽  
Grzegorz Kwiatek ◽  
Erik Rybacki ◽  
Audrey Bonnelye ◽  
...  

<p>Fluid injection causes fault slip that is partitioned in aseismic and seismic moment release. EGS stimulation campaigns have shown that in addition to total fluid volume injected also the rates of injection and fluid pressure increase affect seismic moment release. We investigate the effect of injection rate on slip characteristics, strain partitioning and energy budget in laboratory fluid injection experiments on reservoir sandstone samples in a triaxial deformation apparatus equipped with a 16-channel acoustic emission (AE) recording system. We injected fluid in sawcut samples containing a critically stressed fault at different pressurization rates. In general, fluid-induced fault deformation is dominantly aseismic. We find slow stick-slip events are induced at high fluid pressurization rate while steady fault creep occurs in response to low fluid pressurization rate. The released total seismic moment is found to be related to total injected volume, independent of fault slip behavior. Seismic moment release rate of AE is related to measured fault slip velocity. Total potential energy change and fracture energy release rate are defined by fault stiffness and largely independent of injection rate. Breakdown power density scales with slip rate and is significantly higher for fast injection and pressurization rates. The relation between moment release and injected volume is affected by fault slip behavior, characterized by a linear relation for slip at constant rate and fault creep while a cubic relation is evident for unstable and dynamic slip. Our experimental results allow separating a stable pressure-controlled injection phase with low rate of energy dissipation from a run-away phase, where breakdown power is high and cumulative moment release with injected volume is non-linear.</p>


Sign in / Sign up

Export Citation Format

Share Document