The effect of stress on the primary permeability of rock cores—a facet of hydraulic fracturing

1981 ◽  
Vol 18 (2) ◽  
pp. 195-204 ◽  
Author(s):  
R. Heystee ◽  
J.-C. Roegiers

Recent laboratory hydraulic fracturing experiments have shown that fluid penetration into the rock mass adjacent to the borehole being pressurized has a significant influence on the magnitude of the breakdown pressure. One factor affecting the degree of penetration of the pressurizing fluid is the permeability of the rock mass, which in turn is a function of the state of stress present in the rock mass. To study this permeability–stress relationship, a radial permeameter was constructed and three rock types tested. Derived expressions show that during radially divergent and convergent flow in the permeameter, the state of stress in the rock specimen is tensile and compressive respectively. The radial permeameter test results show that the permeability of rock increases significantly under tensile stress conditions and reduces under compressive stress conditions. The results from this study were used to develop a conceptual model which explains the dependency of breakdown pressure levels on the pressurization rate.

2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Zeeshan Tariq ◽  
Mohamed Mahmoud ◽  
Abdulazeez Abdulraheem ◽  
Dhafer Al-Shehri ◽  
Mobeen Murtaza

Abstract Unconventional hydrocarbon resources mostly found in highly stressed, overpressured, and deep formations, where the rock strength and integrity are very high. When fracturing these kinds of rocks, the hydraulic fracturing operation becomes much more challenging and difficult and in some cases reaches to the maximum pumping capacity limits without generating any fracture. This reduces the operational gap to optimally place the hydraulic fractures. Current stimulation methods to reduce the fracture pressures involvement with adverse environmental effects and high costs due to the entailment of water mixed with huge volumes of chemicals. In this study, a new environment friendly approach to reduce the breakdown pressure of the unconventional rock is presented. The new method incorporates the injection of chemical-free fracturing fluid in a series of cycles with a progressive increase of the pressurization rate in each cycle. This study is carried out on different cement blocks with varying petrophysical and mechanical properties to simulate real rock types. The results showed that the new method of cyclic fracturing can reduce the breakdown pressure to 24.6% in ultra-tight rocks, 19% in tight rocks, and 14.8% in medium- to low-permeability rocks. This reduction in breakdown pressure helped to overcome the operational challenges in the field and makes the fracturing operation much greener.


1972 ◽  
Vol 12 (01) ◽  
pp. 69-77 ◽  
Author(s):  
Hilmar von Schonfeldt ◽  
C. Fairhurst

Abstract Hydraulic fracturing experiments at two underground and one near-surface location in igneous and shale formations were described. The tests were designed to study the feasibility of hydraulic fracturing as a method of determining in-situ stresses. The tests were carried out in open holes of 2-3/8-in. diameter. Fracturing tests on two 5-ft diameter cores were also reported. The test results revealed an increase in the magnitude of the stress as the face of an opening was approached from inside a rock mass. Horizontal fractures also were observed in areas of reportedly high lateral stress, providing some evidence for the validity of the providing some evidence for the validity of the principle of least resistance. The results also principle of least resistance. The results also indicate that caution must be used in using the shut-in pressure as a measure of the least compressive stress. Introduction Hydraulic fracturing is best known as a well stimulation method. There are other important applications, however, for which the process shows great potential. One of these is in the area of in-situ stress determination as suggested by Scheidegger Kehle and Fairhurst. The mechanics of the fracturing process is the same in any application, and improvement of the method may therefore be expected through a mutual exchange of experience in each of these areas. The theory of the hydraulic fracturing technique relates measurable quantities such as the breakdown pressure and the instantaneous shut-in pressure to pressure and the instantaneous shut-in pressure to the tectonic stresses and certain physical rock properties. properties. Assuming negligible pore pressure and fluid penetration, the break-down pressure (pC) at the penetration, the break-down pressure (pC) at the instant of fracture initiation is given by the following expressions....................(1) when the fracture extends in a "radial" direction (in a plane parallel to the axis of the borehole). And...................(2) when the fracture extends in a direction normal to the borehole axis. Corresponding expressions that include the effect of pore pressure and fluid penetration are given in the literature Because our work was done in dry and impermeable formations, Eqs. 1 and 2 are considered adequate. These formulae are based on the assumption that the borehole is drilled parallel to 3 and that the rock behaves as a linearly elastic isotropic material; it also assumes that the fracture is initiated in a direction perpendicular to the least compressive stress, i.e., 2 or 3, respectively, in accordance with the principle of least resistance. The terms "radial" and "normal" fractures are introduced in place of the commonly used terms "vertical" and "horizontal" fractures in order to avoid possible confusion in the event a borehole is drilled in a direction other than the vertical. Eqs. 1 and 2 establish a simple relation between the breakdown pressure and the regional (far-field) stresses. It also has been suggested that the instantaneous shut-in pressure is a measure for the least compressive stress because a fracture will propagate in a direction normal to it. Therefore, propagate in a direction normal to it. Therefore, or ..........................(3) Thus Eqs. 1 and 3 may serve to estimate the regional stresses 1, and 2 provided it is known that a radial fracture was generated, and it is possible to determine the rupture strength (K ). possible to determine the rupture strength (K ). Similarly Eqs. 2 or 3 will give an estimate of the stress 3. Scheidegger and Kehle determined regional stresses through a similar analysis of hydraulic fracturing data. SPEJ P. 69


2021 ◽  
Author(s):  
Ayman R. Al-Nakhli ◽  
Zeeshan Tariq ◽  
Mohamed Mahmoud ◽  
Abdulazeez Abdulraheem

Abstract Commercial volumes of hydrocarbon production from tight unconventional reservoirs need massive hydraulic fracturing operations. Tight unconventional formations are typically located inside deep and over-pressured formations where the rock fracture pressure with slickwater becomes so high because of huge in situ stresses. Therefore, several lost potentials and failures were recorded because of high pumping pressure requirements and reservoir tightness. In this study, thermochemical fluids are introduced as a replacement for slickwater. These thermochemical fluids are capable of reducing the rock fracture pressure by generating micro-cracks and tiny fractures along with the main hydraulic fractures. Thermochemical upon reaction can generate heat and pressure simultaneously. In this study, several hydraulic fracturing experiments in the laboratory on different synthetic cement samples blocks were carried out. Cement blocks were made up of several combinations of cement and sand ratios to simulate real rock scenarios. Results showed that fracturing with thermochemical fluids can reduce the breakdown pressure of the cement blocks by 30%, while applied pressure was reduced up to 88%, when using thermochemical fluid, compared to slickwater. In basins with excessive tectonic stresses, the current invention can become an enabler to fracture and stimulate well stages which otherwise left untreated. A new methodology is developed to lower the breakdown pressure of such reservoirs, and enable fracturing. Keywords: Unconventional formation; breakdown pressure; thermochemicals; micro fractures.


1975 ◽  
Vol 11 (6) ◽  
pp. 647-650
Author(s):  
B. V. Vlasenko ◽  
F. M. Érlikhman

Sign in / Sign up

Export Citation Format

Share Document