fracturing experiments
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 20)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Murtadha J. AlTammar ◽  
Mukul M. Sharma

Abstract In recent years, numerical fracturing simulation has seen an unprecedented emphasis on capturing the complexities that arise in hydraulic fracturing to better design and execute hydraulic fracturing jobs. As the need for more sophisticated simulators grows, so does the need for more sophisticated physical models that can be used to study the mechanics of the fracturing process under a controlled environment, and to validate the numerical predictions of advanced hydraulic fracturing simulators. We developed and utilized novel laboratory capabilities to perform an extensive set of fracturing experiments across various aspects of hydraulic fracture propagation including the effect of far-field stress contrast, rock mechanical heterogeneity, multi-well injection, borehole notching, fluid injection method, type of injection fluid, and interaction with natural fractures. Numerous direct observations and digital image analyses are documented to provide fundamental insights in hydraulic fracturing. As demonstrated through a few case studies from the literature, our laboratory experiments are very useful for validating hydraulic fracturing simulators due to the small-scale, two-dimensional (2-D) nature, controlled environment, and well-characterized properties of the test specimens used in the experiments.


2021 ◽  
pp. 014459872110289
Author(s):  
Liangwei Li ◽  
Wenbin Wu

Triaxial hydraulic fracturing experiments were used to study the initiation pressure variation and acoustic emission characteristics of different guide seams sizes during roof hydraulic fracturing. Numerical simulations were used to explore the feasibility of multiple boreholes with prefabricated guide seams. An experiment of hydraulic fracturing on a pillar-free working face was also carried out in a coal mine. The results show that the specimens with guide seams reduced the initiation pressure, with the number of acoustic emission events and initiation pressure being inversely proportional to the size of the guide seams. Specimens without guide seams were deflected by stress and produced multi-level cracks, while the specimens with guide seams did not produce large secondary cracks and deflection. When the stress difference was small, three holes penetrated but not under large stress differences. The hydraulic fracturing technology of prefabricated longitudinal guide seams was tested in the Ningtiaota Coal Mine, and the auxiliary transportation roadway of S1201 working face was successfully retained for reuse in adjacent working faces.


2021 ◽  
Author(s):  
Ayman R. Al-Nakhli ◽  
Zeeshan Tariq ◽  
Mohamed Mahmoud ◽  
Abdulazeez Abdulraheem

Abstract Commercial volumes of hydrocarbon production from tight unconventional reservoirs need massive hydraulic fracturing operations. Tight unconventional formations are typically located inside deep and over-pressured formations where the rock fracture pressure with slickwater becomes so high because of huge in situ stresses. Therefore, several lost potentials and failures were recorded because of high pumping pressure requirements and reservoir tightness. In this study, thermochemical fluids are introduced as a replacement for slickwater. These thermochemical fluids are capable of reducing the rock fracture pressure by generating micro-cracks and tiny fractures along with the main hydraulic fractures. Thermochemical upon reaction can generate heat and pressure simultaneously. In this study, several hydraulic fracturing experiments in the laboratory on different synthetic cement samples blocks were carried out. Cement blocks were made up of several combinations of cement and sand ratios to simulate real rock scenarios. Results showed that fracturing with thermochemical fluids can reduce the breakdown pressure of the cement blocks by 30%, while applied pressure was reduced up to 88%, when using thermochemical fluid, compared to slickwater. In basins with excessive tectonic stresses, the current invention can become an enabler to fracture and stimulate well stages which otherwise left untreated. A new methodology is developed to lower the breakdown pressure of such reservoirs, and enable fracturing. Keywords: Unconventional formation; breakdown pressure; thermochemicals; micro fractures.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yifan Dai ◽  
Bing Hou ◽  
Changlin Zhou ◽  
Kunpeng Zhang ◽  
Fei Liu

Steering acid fracturing is a technique that improves the conductivity of carbonate reservoir. It is widely used in a carbonate reservoir. However, due to the lack of comparative experiments, the application of steering acid to improve the fracturing results is still unknown. Therefore, a series of true triaxial acid fracturing experiments were conducted to study steering acid fracturing in carbonate reservoir. The carbonate specimens used in the experiment were from the Qixia group and Dengsi Member in Sichuan, China. In this study, slick water, cross-linked gel, and self-generating acid were used as ahead fluid to cooperate with steering acid. Experimental results show that (1) the low-viscosity ahead fluid with steering acid can result in more complex fractures; (2) the complexity of fractures is influenced by natural fracture and the viscosity of the ahead fluid; and (3) based on the 3D scanning results of the fracture surface, different ahead fluids will lead to different corrosion results. This study provides useful suggestions on steering acid fracturing design and physical simulation experiments.


2021 ◽  
Author(s):  
Ryota Goto ◽  
Noriaki Watanabe ◽  
Kiyotoshi Sakaguchi ◽  
Youqing Chen ◽  
Takuya Ishibashi ◽  
...  

<p>Superhot geothermal environments with temperatures of approximately 400-500<sup>︒</sup>C at depth of approximately 2-4 km are expected as a new geothermal energy frontier. In order to efficiently exploit the superhot geothermal resources, fracture systems are necessary as flow path of working fluid. Hydraulic fracturing is a promising technique because it is able to create a new fracture system or enhance the permeability of preexisting fracture system. Laboratory-scale hydraulic fracturing experiments of granite have demonstrated the formation of densely distributed network of permeable fractures throughout the entire rock body at or near the supercritical temperature for water. Though the process has been presumed to involve continuous infiltration of low-viscosity water into preexisting microfractures followed by creation and merger of the subsequent fractures, plausible criterion for the fracturing is yet to be clarified. The possibility that the Griffith failure criterion is available to predict the occurrence of fracturing was shown by hydraulic fracturing experiments with acoustic emission measurements of granite at 400<sup>︒</sup>C under true triaxial stress. The present study provides a theoretical basis required to establish the procedure for hydraulic fracturing in superhot geothermal environment.</p>


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hao Kang ◽  
Jincai Zhang ◽  
Xin Fan ◽  
Zhiwen Huang

In hydraulic fracturing applications, there is substantial interest to reduce the formation breakdown pressure. Previous research results show that the cyclic injection method can be used to reduce that pressure. In this study, we conducted laboratory hydraulic fracturing experiments to apply cyclic injection to reduce the breakdown pressures of very tight and strong sandstones. Experimental results show that using cyclic injection the average breakdown pressure was reduced by 18.9% in very tight sandstones and by 7.18% in normal sandstones. This indicates that the effect of cyclic injection is more significant for stronger and tighter rocks. The experiments also reveal that the rock tensile strength plays a more important role in the formation breakdown pressure with a rock strength factor of 2.85. This suggests that the breakdown pressure is higher than expected. In addition, we empirically related the breakdown pressure reduction and the injection pressure amplitude to the number of injection cycles. The curve fitting results imply that the effect of cyclic injection is more important if the number of cycles or the injection pressure amplitude is increased. Based on the results of this research, the in-situ formation breakdown pressure can be reduced by applying the cyclic injection method, and the breakdown pressure reduction is more significant as the number of cycles increases.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Zeeshan Tariq ◽  
Mohamed Mahmoud ◽  
Olalekan Alade ◽  
Abdulazeez Abdulraheem ◽  
Ayyaz Mustafa ◽  
...  

Abstract Elastic moduli contrast between the adjacent layers in a layered formation can lead to various problems in a conventional hydraulic fracturing job such as improper fracture height growth, limited penetration in a weaker layer only, and nonconductive fractures. In this study, the results of thermochemical fracturing experiment are presented. The hydraulic fracturing experiments presented in this study were carried out on four-layered very tight cement block samples. The results revealed that the novel fracturing technique can reduce the required breakdown pressure in a layered rock by 26%, from 1495 psi (reference breakdown pressure recorded in the conventional hydraulic fracturing technique) to 1107 psi (breakdown pressure recorded in the thermochemical fracturing). The posttreatment experimental analysis showed that the thermochemical fracturing approach resulted in deep and long fractures, passing through majority of the layers, while conventional hydraulic fracturing resulted in a thin fracture that affected only the top layer. A productivity analysis was also carried out which suggested that the fracturing with thermochemical fluids can raise the oil flowrate up to 76% when compared to a conventional hydraulic fracturing technique. Thermochemical fluids injection caused the creation of microfractures and reduces the linear elastic parameters of the rocks. The new technique is cost effective, nontoxic, and sustainable in terms of no environmental hazards.


Sign in / Sign up

Export Citation Format

Share Document