Calculation of the state of stress of a rock mass from surface displacements

1975 ◽  
Vol 11 (6) ◽  
pp. 647-650
Author(s):  
B. V. Vlasenko ◽  
F. M. Érlikhman
1981 ◽  
Vol 18 (2) ◽  
pp. 195-204 ◽  
Author(s):  
R. Heystee ◽  
J.-C. Roegiers

Recent laboratory hydraulic fracturing experiments have shown that fluid penetration into the rock mass adjacent to the borehole being pressurized has a significant influence on the magnitude of the breakdown pressure. One factor affecting the degree of penetration of the pressurizing fluid is the permeability of the rock mass, which in turn is a function of the state of stress present in the rock mass. To study this permeability–stress relationship, a radial permeameter was constructed and three rock types tested. Derived expressions show that during radially divergent and convergent flow in the permeameter, the state of stress in the rock specimen is tensile and compressive respectively. The radial permeameter test results show that the permeability of rock increases significantly under tensile stress conditions and reduces under compressive stress conditions. The results from this study were used to develop a conceptual model which explains the dependency of breakdown pressure levels on the pressurization rate.


2011 ◽  
Vol 42 ◽  
pp. 117-124
Author(s):  
Krishna Kanta Panthi

Determination of in-situ stresses in the rock mass is necessary for stability assessment and proper design of underground openings. It is important to know the state of stress surrounding the opening so that right and optimum rock support is assigned as preliminary and permanent rock support. However, the majority of long tunnels with high rock cove r face severe tunnel instability problems related to rock stresses. The headrace tunnel of Parbati II hydroelectric project is one of such tunnels, especially the tunnel segment passing through Manikaran quartzite. It is known fact that the extent and type of stress induced instability vary greatly upon rock type, deformability properties, jointing and inter-bedding characteristics in the rock mass. This paper back calculates the state of stress using Phase 2  finite element model  in a TBM  bored segment of  the tunnel and  also briefly reviews mechanical properties of the  intact rock that may have direct link on the  nature of stress induced  instability. It is believed that back calculated stress magnitude may be useful for the stability assessment in other segment of headrace tunnel.


Author(s):  
Nils Cwiekala ◽  
David A Hills

The state of stress present in an elastic half-plane contact problem, where one or both bodies is subject to remote tension has been investigated, both for conditions of full stick and partial slip. The state of stress present near the contact edges is studied for different loading scenarios in an asymptotic form. This is of practical relevance to the study of contacts experiencing fretting fatigue, and enables the environment in which cracks nucleate to be specified.


Author(s):  
Battista Grosso ◽  
Valentina Dentoni ◽  
Augusto Bortolussi

AbstractUnderground quarrying is rarely adopted for granite extraction due to the difficulties in the implementation of traditional technologies (drilling and explosive). As alternative to drilling and explosive, the combination of diamond wire and water jet seems to be the most promising available technology. The cutting performance achievable with the water jet technology depends on the operative parameters, the material characteristics and the state of stress within the rock massif. To assess the effect of the state of stress on the cutting rate, laboratory tests have been performed with an oscillating water jet machine on granite samples subjected to a static load. The stress distribution in the layer of rock to be removed has been evaluated by numerical simulation with the FLAC code (Fast Lagrangian Analysis of Continua). The correlation between the results of the cutting tests and the numerical models of the rock samples has been inferred. Starting from a conceptual model, which theoretically describes the relationship between the cutting rate and the stress, a step function was defined that indicates the ranges of stress where predefined values of the cutting rate are workable.


Sign in / Sign up

Export Citation Format

Share Document