Estimation of myocardial glucose utilisation with PET using the left ventricular time-activity curve as a non-invasive input function

1998 ◽  
Vol 36 (1) ◽  
pp. 112-117 ◽  
Author(s):  
X. Li ◽  
D. Feng ◽  
K. -P. Lin ◽  
S. -C. Huang
1981 ◽  
Vol 6 (7) ◽  
pp. 301-307 ◽  
Author(s):  
P. Todd Makler ◽  
Barry Denenberg ◽  
Alfred A. Bove ◽  
Leon S. Malmud ◽  
James F. Spann

2017 ◽  
Vol 39 (1) ◽  
pp. 163-172 ◽  
Author(s):  
Thomas Koopman ◽  
Maqsood Yaqub ◽  
Dennis FR Heijtel ◽  
Aart J Nederveen ◽  
Bart NM van Berckel ◽  
...  

Quantification of regional cerebral blood flow (CBF) using [15O]H2O positron emission tomography (PET) requires the use of an arterial input function. Arterial sampling, however, is not always possible, for example in ill-conditioned or paediatric patients. Therefore, it is of interest to explore the use of non-invasive methods for the quantification of CBF. For validation of non-invasive methods, test–retest normal and hypercapnia data from 15 healthy volunteers were used. For each subject, the data consisted of up to five dynamic [15O]H2O brain PET studies of 10 min and including arterial sampling. A measure of CBF was estimated using several non-invasive methods earlier reported in literature. In addition, various parameters were derived from the time-activity curve (TAC). Performance of these methods was assessed by comparison with full kinetic analysis using correlation and agreement analysis. The analysis was repeated with normalization to the whole brain grey matter value, providing relative CBF distributions. A reliable, absolute quantitative estimate of CBF could not be obtained with the reported non-invasive methods. Relative (normalized) CBF was best estimated using the double integration method.


2020 ◽  
Author(s):  
Yassine Toufique ◽  
Othmane Bouhali ◽  
Pauline Negre ◽  
Jim O Doherty

Abstract Background : Arterial sampling in PET studies for the purposes of kinetic modeling remains an invasive, time intensive and expensive procedure. Alternatives to derive the blood time-activity curve (BTAC) non-invasively are either reliant on large vessels in the field of view or are laborious to implement and analyse as well as being prone to many processing errors. An alternative method is proposed in this work by the simulation of a non-invasive coincidence detection unit. Results: We utilized GATE simulations of a human forearm phantom with a blood flow model, as well as a model for dynamic radioactive bolus activity concentration based on clinical measurements. A fixed configuration of 14, and also separately, 8 detectors were employed around the phantom, and simulations performed to investigate signal detection parameters. BGO crystals proved to show the highest detection efficiency and sensitivity to a simulated BTAC with a maximum coincidence rate of 575 cps. Repeatable location of the blood vessels in the forearm allowed a half-ring design with only 8 detectors. Using this configuration, maximum coincident rates of 250 cps and 42 cps were achieved with simulation of activity concentration determined from 15 O and 18 F arterial blood sampling. NECR simulated in a water phantom at 3 different vertical positions inside the 8-detector system (Y=-1 cm, Y=-2 cm and Y=-3 cm) was 8360 cps, 13041 cps and 20476 cps at an activity of 3.5 MBq. Addition of extra axial detection planes to the half-ring configuration provided increases in system sensitivity by a factor of approximately 10. Conclusions: Initial simulations demonstrated that the configuration of a single half-ring 8 detector of monolithic BGO crystals could describe the a simulated BTAC in a clinically relevant forearm phantom with good signal properties, and an increased number of axial detection planes can provide increased sensitivity of the system. The system would find use in the derivation of the BTAC for use in the application of kinetic models without physical arterial sampling or reliance on image-based techniques.


1987 ◽  
Vol 26 (06) ◽  
pp. 248-252 ◽  
Author(s):  
M. J. van Eenige ◽  
F. C. Visser ◽  
A. J. P. Karreman ◽  
C. M. B. Duwel ◽  
G. Westera ◽  
...  

Optimal fitting of a myocardial time-activity curve is accomplished with a monoexponential plus a constant, resulting in three parameters: amplitude and half-time of the monoexponential and the constant. The aim of this study was to estimate the precision of the calculated parameters. The variability of the parameter values as a function of the acquisition time was studied in 11 patients with cardiac complaints. Of the three parameters the half-time value varied most strongly with the acquisition time. An acquisition time of 80 min was needed to keep the standard deviation of the half-time value within ±10%. To estimate the standard deviation of the half-time value as a function of the parameter values, of the noise content of the time-activity curve and of the acquisition time, a model experiment was used. In most cases the SD decreased by 50% if the acquisition time was increased from 60 to 90 min. A low amplitude/constant ratio and a high half-time value result in a high SD of the half-time value. Tables are presented to estimate the SD in a particular case.


Sign in / Sign up

Export Citation Format

Share Document