The development of the noradrenergic transmitter phenotype in postganglionic sympathetic neurons

1996 ◽  
Vol 21 (7) ◽  
pp. 823-829 ◽  
Author(s):  
U. Ernsberger ◽  
H. Rohrer
Development ◽  
1992 ◽  
Vol 114 (3) ◽  
pp. 689-698 ◽  
Author(s):  
H. Rohrer

Catecholaminergic sympathetic neurons are able to change their transmitter phenotype during development and to acquire cholinergic properties. Cholinergic sympathetic differentiation is only observed in fibers innervating specific targets like the sweat glands in the rat footpad. A function for ciliary neurotrophic factor (CNTF) in this process has been implied as it is able to induce cholinergic properties (ChAT, VIP) in cultured chick and rat neurons. We show here that a CNTF-like, VIP-inducing activity is present in rat footpads and that its increases 6-fold during the period of cholinergic sympathetic differentiation. Immunohistochemical analysis of P21 rat footpads demonstrated CNTF-like immunoreactivity in Schwann cells but not in sweat glands, the target tissue of cholinergic sympathetic neurons. The expression of this factor in footpads seems to be dependent on the presence of intact nerve axons, as nerve transection results in a loss of CNTF-like cholinergic activity and immunoreactivity. Immunoprecipitation experiments with rat footpad extracts provided evidence for the presence of ChAT-inducing factors other than CNTF, which may independently or together with CNTF be involved in the determination of sympathetic neuron phenotype.


Author(s):  
E. B. Masurovsky ◽  
H. H. Benitez ◽  
M. R. Murray

Recent light- and electron microscope studies concerned with the effects of D2O on the development of chick sympathetic ganglia in long-term, organized culture revealed the presence of rod-like fibrillar formations, and associated granulofibrillar bodies, in the nuclei of control and deuterated neurons. Similar fibrillar formations have been reported in the nuclei of certain mammalian CNS neurons; however, related granulofibrillar bodies have not been previously described. Both kinds of intranuclear structures are observed in cultures fixed either in veronal acetate-buffered 2%OsO4 (pH 7. 4), or in 3.5% glutaraldehyde followed by post-osmication. Thin sections from such Epon-embedded cultures were stained with ethanolic uranyl acetate and basic lead citrate for viewing in the electron microscope.


Author(s):  
Arthur Lo ◽  
Lucy Norcliffe-Kaufmann ◽  
Ross Vickery ◽  
David Bourdet ◽  
Jitendra Kanodia

Abstract Purpose Ampreloxetine is a novel, selective, long-acting norepinephrine reuptake (NET) inhibitor being investigated as a once-daily oral treatment for symptomatic neurogenic orthostatic hypotension (nOH) in patients with autonomic synucleinopathies. The purpose of this study was to characterize the pharmacokinetic and pharmacodynamic profiles of ampreloxetine in this target population. Methods Patients with nOH were enrolled in a multicenter, phase II clinical trial of ampreloxetine (NCT02705755). They received escalating doses over 5 days in the clinical research unit, followed by 20 weeks of open-label treatment and then a 4-week withdrawal. As neurochemical biomarkers of NET inhibition, we assayed plasma concentrations of norepinephrine (NE) and its main intraneuronal metabolite 3,4-dihydroxyphenylglycol (DHPG) pre- and post-ampreloxetine. Results Thirty-four patients with nOH were enrolled. Plasma ampreloxetine concentrations increased with repeated escalating doses, with peak concentrations observed 6–9 h post-drug administration. The median ampreloxetine dose in the 20-week treatment phase was 10 mg once daily. Plasma ampreloxetine concentrations reached steady state by 2 weeks, with stable plasma levels over 24 h. No influence of age or renal function on ampreloxetine plasma concentrations was observed. On treatment, compared to baseline, plasma NE significantly increased by 71% (p < 0.005), plasma DHPG significantly declined by 22% (p < 0.05), and the NE:DHPG ratio significantly increased (p < 0.001). Conclusions Persistent elevation of plasma NE levels accompanied by reduced DHPG levels after ampreloxetine suggests reduced neuronal reuptake and metabolism of NE in postganglionic efferent sympathetic neurons. The findings are consistent with long-lasting NET inhibition, which may increase vasoconstrictor tone, supporting once-daily ampreloxetine dosing in patients with nOH.


2017 ◽  
Vol 204 (5-6) ◽  
pp. 293-303 ◽  
Author(s):  
Masatoshi Fujita ◽  
Tadasu Sato ◽  
Takehiro Yajima ◽  
Eiji Masaki ◽  
Hiroyuki Ichikawa

TRPC (transient receptor potential cation channel subfamily C) members are nonselective monovalent cation channels and control Ca2+ inflow. In this study, immunohistochemistry for TRPC1, TRPC3, and TRPC4 was performed on rat oral and craniofacial structures to elucidate their distribution and function in the peripheries. In the trigeminal ganglion (TG), 56.1, 84.1, and 68.3% of sensory neurons were immunoreactive (IR) for TRPC1, TRPC3, and TRPC4, respectively. A double immunofluorescence method revealed that small to medium-sized TG neurons co-expressed TRPCs and calcitonin gene-related peptide. In the superior cervical ganglion, all sympathetic neurons showed TRPC1 and TRPC3 immunoreactivity. Parasympathetic neurons in the submandibular ganglion, tongue, and parotid gland were TRPC1, TRPC3, and TRPC4 IR. Gustatory and olfactory cells were also IR for TRPC1, TRPC3, and/or TRPC4. In the musculature, motor endplates expressed TRPC1 and TRPC4 immunoreactivity. It is likely that TRPCs are associated with sensory, autonomic, and motor functions in oral and craniofacial structures.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Mongillo ◽  
M Franzoso ◽  
V Prando ◽  
L Dokshokova ◽  
A Di Bona ◽  
...  

Abstract Background Sympathetic neurons (SNs) innervate the myocardium with a defined topology that allows physiological modulation of cardiac activity. Neurotrophins released by cardiac cells control SN viability and myocardial distribution, which are impaired in heart diseases with reduced (e.g. heart failure) or heterogenous sympathetic stimulation (e.g. arrhythmias). We previously demonstrated that SNs interact directly with cardiomyocytes (CMs) at neuro-cardiac junctions (NCJ), and such structured contact sites allow neurons to efficiently activate β-adrenoceptors on the myocyte membrane. Aims We here asked whether NCJs are functional for retrograde (myocyte to neuron) neurotrophic signaling. Methods and results Electron microscopy and immunofluorescence on mouse heart slices and SN/CM co-cultures showed that the NGF receptor, TrkA, is preferentially found in correspondence of the NCJ. Consistently, neurons taking structured contact with CMs showed fast TrkA activation and its retrograde transport to the soma, which was monitored using live confocal imaging in cells expressing TrkA-RFP. In accord with NGF dependent effects, CM-contacted SN showed larger synaptic varicosities and did not require NGF supplementation in the culture medium. In support that NGF locally released at NCJs sustains SN viability, the neurotrophin concentration in the culture medium was 1.61 pg/mL, and did not suffice to maintain neuronal viability, which was also perturbed (66% decrease of neuronal density) by silencing NGF expression in CMs. These results support that the NCJ is essential for intercellular neurotrophin signaling. Consistently, by applying competitive inhibition of TrkA with increasing doses of K252a, we estimated NGF concentration at the contact site to be about 1000-fold higher than that released by CM in the culture medium. To seek for the structural determinants of the NCJ, we focused on dystrophin, based on the finding that the protein accumulates on the CM membrane portion contacted by SNs, as observed in mouse heart slices, and co-cultured CMs. In support of a role of CM-expressed dystrophin in neurotrophic signaling, hearts from dystrophin-KO (mdx) mice showed 74.36% decrease of innervation, with no significant changes of NGF expression. In line with the purported role of NCJs, in co-cultures between wild type SNs and mdx CMs, TrkA activation (TrkA movements toward SN soma (%): WTCM-WTSN=18±4; MDXCM-WTSN= 12±3; p&lt;0,05) and neuronal survival were reduced. Conclusions Taken together, our results suggest that NGF-dependent signaling to SNs requires a direct and specialized interaction with myocytes, and that loss of dystrophin at the CM membrane impairs retrograde signaling to the neurons leading to cardiac sympathetic dys-innervation. Funding Acknowledgement Type of funding source: Public Institution(s). Main funding source(s): University of Padova


Sign in / Sign up

Export Citation Format

Share Document