neurotrophic signaling
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 12)

H-INDEX

19
(FIVE YEARS 2)

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Qian Li ◽  
Yi Feng ◽  
Yingchao Xue ◽  
Xiping Zhan ◽  
Yi Fu ◽  
...  

Abstract Background Spinal cord motor neurons (MNs) from human iPS cells (iPSCs) have wide applications in disease modeling and therapeutic development for amyotrophic lateral sclerosis (ALS) and other MN-associated neurodegenerative diseases. We need highly efficient MN differentiation strategies for generating iPSC-derived disease models that closely recapitulate the genetic and phenotypic complexity of ALS. An important application of these models is to understand molecular mechanisms of action of FDA-approved ALS drugs that only show modest clinical efficacy. Novel mechanistic insights will help us design optimal therapeutic strategies together with predictive biomarkers to achieve better efficacy. Methods We induce efficient MN differentiation from iPSCs in 4 days using synthetic mRNAs coding two transcription factors (Ngn2 and Olig2) with phosphosite modification. These MNs after extensive characterization were applied in electrophysiological and neurotoxicity assays as well as transcriptomic analysis, to study the neuroprotective effect and molecular mechanisms of edaravone, an FDA-approved drug for ALS, for improving its clinical efficacy. Results We generate highly pure and functional mRNA-induced MNs (miMNs) from control and ALS iPSCs, as well as embryonic stem cells. Edaravone alleviates H2O2-induced neurotoxicity and electrophysiological dysfunction in miMNs, demonstrating its neuroprotective effect that was also found in the glutamate-induced miMN neurotoxicity model. Guided by the transcriptomic analysis, we show a previously unrecognized effect of edaravone to induce the GDNF receptor RET and the GDNF/RET neurotrophic signaling in vitro and in vivo, suggesting a clinically translatable strategy to activate this key neuroprotective signaling. Notably, edaravone can replace required neurotrophic factors (BDNF and GDNF) to support long-term miMN survival and maturation, further supporting the neurotrophic function of edaravone-activated signaling. Furthermore, we show that edaravone and GDNF combined treatment more effectively protects miMNs from H2O2-induced neurotoxicity than single treatment, suggesting a potential combination strategy for ALS treatment. Conclusions This study provides methodology to facilitate iPSC differentiation and disease modeling. Our discoveries will facilitate the development of optimal edaravone-based therapies for ALS and potentially other neurodegenerative diseases. Graphical abstract


Author(s):  
Danit Lavenda-Grosberg ◽  
Maya Lalzar ◽  
Noam Leser ◽  
Aseel Yaseen ◽  
Assaf Malik ◽  
...  

AbstractSocial isolation poses a severe mental and physiological burden on humans. Most animal models that investigate this effect are based on prolonged isolation, which does not mimic the milder conditions experienced by people in the real world. We show that in adult male rats, acute social isolation causes social memory loss. This memory loss is accompanied by significant changes in the expression of specific mRNAs and proteins in the medial amygdala, a brain structure that is crucial for social memory. These changes particularly involve the neurotrophic signaling and axon guidance pathways that are associated with neuronal network remodeling. Upon regrouping, memory returns, and most molecular changes are reversed within hours. However, the expression of some genes, especially those associated with neurodegenerative diseases remain modified for at least a day longer. These results suggest that acute social isolation and rapid resocialization, as experienced by millions during the COVID-19 pandemic, are sufficient to induce significant changes to neuronal networks, some of which may be pathological.


2021 ◽  
Author(s):  
Khyati Gohil ◽  
M. Zain Kazmi ◽  
Florence Williams

Neurotrophic small molecule natural products are functional analogs of signaling proteins called neurotrophins, which cause a pro-growth, pro-survival, or pro-differentiation response in neuronal cells. While these phenotypic responses are desirable to combat neurodegenerative disease progression, neurotrophin proteins possess pharmacokinetic properties that present challenges to their administration in living organisms, whether in biomedical studies or as therapeutics. Small molecules such as the cis- and trans-banglenes offer attractive alternatives to activate neurotrophic responses. We describe the synthesis and testing of banglene derivatives to establish a structure-activity response for the banglene family. Notably, during the course of our studies trans-banglene was shown to cause nerve growth factor (NGF)-potentiated neuritogenesis that was markedly stronger than the neuritogenic effects of trans-banglene alone. We demonstrate that only (–) trans-banglene is active, while its (+) enantiomer is not, and further demonstrate that select modifications on the cyclohexene ring of trans-banglene does not impair its bioactivity. Finally, to probe the relationship between (–) trans-banglene’s mechanism of ac-tion and canonical NGF signal transduction pathways, we employed kinase inhibitors targeting Pkc, Akt1/2/3 and Erk1/2, designed to inhibit NGF-induced neurotrophic signaling. Interestingly, (–) trans-banglene potentiation of NGF-induced neuri-togenesis was unaffected by the presence of these kinase inhibitors. Collectively, these results suggest a dual-mode of action for (–) trans-banglene (both neurotrophic alone and strongly potentiating of NGF activity), and an independence of its po-tentiating action on Pkc and Erk1/2 enzymatic activity.


2021 ◽  
Vol 15 ◽  
Author(s):  
Divya Choudhury ◽  
Anita E. Autry ◽  
Kimberley F. Tolias ◽  
Vaishnav Krishnan

Ketamine, a non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist, has been employed clinically as an intravenous anesthetic since the 1970s. More recently, ketamine has received attention for its rapid antidepressant effects and is actively being explored as a treatment for a wide range of neuropsychiatric syndromes. In model systems, ketamine appears to display a combination of neurotoxic and neuroprotective properties that are context dependent. At anesthetic doses applied during neurodevelopmental windows, ketamine contributes to inflammation, autophagy, apoptosis, and enhances levels of reactive oxygen species. At the same time, subanesthetic dose ketamine is a powerful activator of multiple parallel neurotrophic signaling cascades with neuroprotective actions that are not always NMDAR-dependent. Here, we summarize results from an array of preclinical studies that highlight a complex landscape of intracellular signaling pathways modulated by ketamine and juxtapose the somewhat contrasting neuroprotective and neurotoxic features of this drug.


2021 ◽  
Vol 118 (25) ◽  
pp. e2100986118
Author(s):  
Zhourui Wu ◽  
Chun Chen ◽  
Seong Su Kang ◽  
Xia Liu ◽  
Xiaohuan Gu ◽  
...  

The molecular mechanism of Alzheimer’s disease (AD) pathogenesis remains obscure. Life and/or environmental events, such as traumatic brain injury (TBI), high-fat diet (HFD), and chronic cerebral hypoperfusion (CCH), are proposed exogenous risk factors for AD. BDNF/TrkB, an essential neurotrophic signaling for synaptic plasticity and neuronal survival, are reduced in the aged brain and in AD patients. Here, we show that environmental factors activate C/EBPβ, an inflammatory transcription factor, which subsequently up-regulates δ-secretase that simultaneously cleaves both APP and Tau, triggering AD neuropathological changes. These adverse effects are additively exacerbated in BDNF+/− or TrkB+/− mice. Strikingly, TBI provokes both senile plaque deposit and neurofibrillary tangles (NFT) formation in TrkB+/− mice, associated with augmented neuroinflammation and extensive neuronal loss, leading to cognitive deficits. Depletion of C/EBPβ inhibits TBI-induced AD-like pathologies in these mice. Remarkably, amyloid aggregates and NFT are tempospatially distributed in TrkB+/− mice brains after TBI, providing insight into their spreading in the progression of AD-like pathologies. Hence, our study revealed the roles of exogenous (TBI, HFD, and CCH) and endogenous (TrkB/BDNF) risk factors in the onset of AD-associated pathologies.


2021 ◽  
Vol 478 (10) ◽  
pp. 1959-1976
Author(s):  
Dhasarathan Ganesan ◽  
Qian Cai

Amphisomes are intermediate/hybrid organelles produced through the fusion of endosomes with autophagosomes within cells. Amphisome formation is an essential step during a sequential maturation process of autophagosomes before their ultimate fusion with lysosomes for cargo degradation. This process is highly regulated with multiple protein machineries, such as SNAREs, Rab GTPases, tethering complexes, and ESCRTs, are involved to facilitate autophagic flux to proceed. In neurons, autophagosomes are robustly generated in axonal terminals and then rapidly fuse with late endosomes to form amphisomes. This fusion event allows newly generated autophagosomes to gain retrograde transport motility and move toward the soma, where proteolytically active lysosomes are predominantly located. Amphisomes are not only the products of autophagosome maturation but also the intersection of the autophagy and endo-lysosomal pathways. Importantly, amphisomes can also participate in non-canonical functions, such as retrograde neurotrophic signaling or autophagy-based unconventional secretion by fusion with the plasma membrane. In this review, we provide an updated overview of the recent discoveries and advancements on the molecular and cellular mechanisms underlying amphisome biogenesis and the emerging roles of amphisomes. We discuss recent developments towards the understanding of amphisome regulation as well as the implications in the context of major neurodegenerative diseases, with a comparative focus on Alzheimer's disease and Parkinson's disease.


2021 ◽  
Author(s):  
Qian Li ◽  
Yi Feng ◽  
Yingchao Xue ◽  
Xiping Zhan ◽  
Yi Fu ◽  
...  

Background: Spinal cord motor neurons (MNs) from human iPS cells (iPSCs) have wide applications in disease modeling and therapeutic development for amyotrophic lateral sclerosis (ALS) and other MN-associated neurodegenerative diseases. We need highly efficient MN differentiation strategies for generating iPSC-derived disease models that closely recapitulate the genetic and phenotypic complexity of ALS. An important application of these models is to understand molecular mechanisms of action of FDA-approved ALS drugs that only show modest clinical efficacy. Novel mechanistic insights will help us design optimal therapeutic strategies together with predictive biomarkers to achieve better efficacy. Methods: We induce efficient MN differentiation from iPSCs in 4 days using synthetic mRNAs coding two transcription factors (Ngn2 and Olig2) with phosphosite modification. These MNs after extensive characterization were applied in electrophysiological and neurotoxicity assays as well as transcriptomic analysis, to study the neuroprotective effect and molecular mechanisms of edaravone, an FDA-approved drug for ALS, for improving its clinical efficacy. Results: We generate highly pure and functional mRNA-induced MNs (miMNs) from normal and ALS iPSCs, as well as embryonic stem cells. Edaravone alleviates H2O2-induced neurotoxicity and electrophysiological dysfunction in miMNs, demonstrating its neuroprotective effect. Guided by the transcriptomic analysis, we show a previously unrecognized effect of edaravone to induce the GDNF receptor RET and the GDNF/RET neurotrophic signaling in vitro and in vivo, suggesting a clinically translatable strategy to activate this key neuroprotective signaling. Notably, edaravone can replace required neurotrophic factors (BDNF and GDNF) to support long-term miMN survival and maturation, further supporting the neurotrophic function of edaravone-activated signaling. Furthermore, we show that edaravone and GDNF combined treatment more effectively protects miMNs from H2O2-induced neurotoxicity than single treatment, suggesting a potential combination strategy for ALS treatment. Conclusions: This study provides methodology to facilitate iPSC differentiation and disease modeling. Our discoveries will facilitate the development of optimal edaravone-based therapies for ALS and potentially other neurodegenerative diseases.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Mongillo ◽  
M Franzoso ◽  
V Prando ◽  
L Dokshokova ◽  
A Di Bona ◽  
...  

Abstract Background Sympathetic neurons (SNs) innervate the myocardium with a defined topology that allows physiological modulation of cardiac activity. Neurotrophins released by cardiac cells control SN viability and myocardial distribution, which are impaired in heart diseases with reduced (e.g. heart failure) or heterogenous sympathetic stimulation (e.g. arrhythmias). We previously demonstrated that SNs interact directly with cardiomyocytes (CMs) at neuro-cardiac junctions (NCJ), and such structured contact sites allow neurons to efficiently activate β-adrenoceptors on the myocyte membrane. Aims We here asked whether NCJs are functional for retrograde (myocyte to neuron) neurotrophic signaling. Methods and results Electron microscopy and immunofluorescence on mouse heart slices and SN/CM co-cultures showed that the NGF receptor, TrkA, is preferentially found in correspondence of the NCJ. Consistently, neurons taking structured contact with CMs showed fast TrkA activation and its retrograde transport to the soma, which was monitored using live confocal imaging in cells expressing TrkA-RFP. In accord with NGF dependent effects, CM-contacted SN showed larger synaptic varicosities and did not require NGF supplementation in the culture medium. In support that NGF locally released at NCJs sustains SN viability, the neurotrophin concentration in the culture medium was 1.61 pg/mL, and did not suffice to maintain neuronal viability, which was also perturbed (66% decrease of neuronal density) by silencing NGF expression in CMs. These results support that the NCJ is essential for intercellular neurotrophin signaling. Consistently, by applying competitive inhibition of TrkA with increasing doses of K252a, we estimated NGF concentration at the contact site to be about 1000-fold higher than that released by CM in the culture medium. To seek for the structural determinants of the NCJ, we focused on dystrophin, based on the finding that the protein accumulates on the CM membrane portion contacted by SNs, as observed in mouse heart slices, and co-cultured CMs. In support of a role of CM-expressed dystrophin in neurotrophic signaling, hearts from dystrophin-KO (mdx) mice showed 74.36% decrease of innervation, with no significant changes of NGF expression. In line with the purported role of NCJs, in co-cultures between wild type SNs and mdx CMs, TrkA activation (TrkA movements toward SN soma (%): WTCM-WTSN=18±4; MDXCM-WTSN= 12±3; p<0,05) and neuronal survival were reduced. Conclusions Taken together, our results suggest that NGF-dependent signaling to SNs requires a direct and specialized interaction with myocytes, and that loss of dystrophin at the CM membrane impairs retrograde signaling to the neurons leading to cardiac sympathetic dys-innervation. Funding Acknowledgement Type of funding source: Public Institution(s). Main funding source(s): University of Padova


2020 ◽  
Vol 11 ◽  
Author(s):  
Liang Yang ◽  
Yong Wang ◽  
Nuomin Li ◽  
Bing Xu ◽  
Juanhui Duan ◽  
...  

Author(s):  
Dehua Liao ◽  
Chen Zhang ◽  
Ni Liu ◽  
Lizhi Cao ◽  
Changshui Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document