Consistency and asymptotic normality of maximum likelihood estimation for Gaussian Markov processes from discrete observations

Metrika ◽  
1996 ◽  
Vol 43 (1) ◽  
pp. 69-90
Author(s):  
Birgit Gaschler
2017 ◽  
Vol 56 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Stanislav Lohvinenko ◽  
Kostiantyn Ralchenko

We consider the fractional Vasicek model of the form dXt = (α-βXt)dt +γdBHt , driven by fractional Brownian motion BH with Hurst parameter H ∈ (1/2,1). We construct the maximum likelihood estimators for unknown parameters α and β, and prove their consistency and asymptotic normality.


2020 ◽  
pp. 2150018
Author(s):  
Zhifen Chen ◽  
Xiaopeng Chen

In this paper, we consider the maximum likelihood estimation for the symmetric [Formula: see text]-stable Ornstein–Uhlenbeck (S[Formula: see text]S-OU) processes based on discrete observations. Since the closed-form expression of maximum likelihood function is hard to obtain in the Lévy case, we choose a mixture of Cauchy and Gaussian distribution to approximate the probability density function (PDF) of the S[Formula: see text]S distribution. By means of transition function and Laplace transform, we construct an explicit approximate sequence of likelihood function, which converges to the likelihood function of S[Formula: see text]S distribution. Based on the approximation of likelihood function we give an algorithm for computing maximum likelihood estimation. We also numerically simulate some experiments which demonstrate the accuracy and stability of the proposed estimator.


2009 ◽  
Vol 25 (2) ◽  
pp. 561-570 ◽  
Author(s):  
Juan Carlos Escanciano

This note proves the consistency and asymptotic normality of the quasi–maximum likelihood estimator (QMLE) of the parameters of a generalized autoregressive conditional heteroskedastic (GARCH) model with martingale difference centered squared innovations. The results are obtained under mild conditions and generalize and improve those in Lee and Hansen (1994,Econometric Theory10, 29–52) for the local QMLE in semistrong GARCH(1,1) models. In particular, no restrictions on the conditional mean are imposed. Our proofs closely follow those in Francq and Zakoïan (2004,Bernoulli10, 605–637) for independent and identically distributed innovations.


Author(s):  
Shuhei Ota ◽  
Mitsuhiro Kimura

AbstractThis paper focuses on the parameter estimation for the d-variate Farlie–Gumbel–Morgenstern (FGM) copula ($$d\ge 2$$ d ≥ 2 ), which has $$2^d-d-1$$ 2 d - d - 1 dependence parameters to be estimated; therefore, maximum likelihood estimation is not practical for a large d from the viewpoint of computational complexity. Besides, the restriction for the FGM copula’s parameters becomes increasingly complex as d becomes large, which makes parameter estimation difficult. We propose an effective estimation algorithm for the d-variate FGM copula by using the method of inference functions for margins under the restriction of the parameters. We then discuss its asymptotic normality as well as its performance determined through simulation studies. The proposed method is also applied to real data analysis of bearing reliability.


Sign in / Sign up

Export Citation Format

Share Document