Crack paths and hydrogen-Afinssisted crack growth response in AlSi 4340 steel

1984 ◽  
Vol 15 (4) ◽  
pp. 735-746 ◽  
Author(s):  
M. Gao ◽  
M. Lu ◽  
R. P. Wei
2012 ◽  
Vol 525-526 ◽  
pp. 17-20
Author(s):  
P.H. Wen ◽  
M.H. Aliabadi

This paper presents a new fatigue crack growth prediction by using the dimensional reduction methods including the dual boundary element method (DBEM) and element-free Galerkin method (EFGM) for two dimensional elastostatic problems. One crack extension segment, i.e. a segment of arc, is introduced to model crack growth path. Based on the maximum principle stress criterion, this new prediction procedure ensures that the crack growth is smooth everywhere except the initial growth and the stress intensity factor of mode II is zero for each crack extension. It is found that the analyses of crack paths using coarse/large size of crack extension are in excellent agreement with analyses of the crack paths by the tangential method with very small increments of crack extension.


2019 ◽  
Vol 300 ◽  
pp. 11008
Author(s):  
Carl H. Wolf ◽  
Andreas Burgold ◽  
Sebastian Henkel ◽  
Meinhard Kuna ◽  
Horst Biermann

The aim of this study is to propose a simplified calculation of the Mode I stress intensity factor K for the cruciform specimen design proposed by Brown and Miller. To calculate K, both cracks have to grow with a similar crack growth rate and the crack paths of the two single cracks with the length a should also be similar. The calculations are carried out on an aluminum specimen and a steel specimen. For all load cases and materials, the stresses resulting from the forces are first considered. It was found that the elastic constants E and ν have only a small influence of less than 3 %. In addition, the coupling between the forces of the load axes, which should be minimized by the slotted arms, is considered. Furthermore K-factors are calculated by FE for different crack lengths. These K-values together with the transmission factor allow to find a K-factor formula for cruciform specimens, which is based on the prescribed forces. Finally, the results of the FE calculation of the exact straight crack paths were compared to experimentally determined crack paths.


2005 ◽  
Vol 127 (1) ◽  
pp. 2-7 ◽  
Author(s):  
K. S. Chan ◽  
J. Feiger ◽  
Y.-D. Lee ◽  
R. John ◽  
S. J. Hudak,

The fatigue crack growth (FCG) behavior of PWA1484 single crystals was characterized in air under mixed-mode loading at 593°C as a function of crystallographic orientation using an asymmetric four-point bend test technique. Most mixed-mode fatigue cracks deflected from the symmetry plane and propagated as transprecipitate, noncrystallographic cracks, while self-similar fatigue crack growth occurred on the (111) planes in (111)/[011] and 111/[112]¯ oriented crystals. The local stress intensity factors and the crack paths of the deflected mixed-mode cracks were analyzed using the finite-element fracture mechanics code, FRANC2D/L. The results indicated that the deflected crack path was close to being normal to the maximum tensile stress direction where the Mode II component diminishes. Crystallographic analysis of the deflected crack paths revealed that the Mode I and the deflected mixed-mode cracks were usually of different crystallographic orientations and could exhibit different Mode I FCG thresholds when the crystallography of the crack paths differed substantially. These results were used to identify the driving force and conditions for cracking mode transition.


CORROSION ◽  
1985 ◽  
Vol 41 (3) ◽  
pp. 151-159 ◽  
Author(s):  
D. D. Macdonald ◽  
H. H. Chung

2021 ◽  
Author(s):  
Bogdan Alexandreanu ◽  
Yiren Chen ◽  
Xuan Zhang ◽  
Wei-Ying Chen

Sign in / Sign up

Export Citation Format

Share Document