Numerical modeling of a wing skin peen forming process

1996 ◽  
Vol 5 (6) ◽  
pp. 753-760 ◽  
Author(s):  
R. D. VanLuchene ◽  
E. J. Cramer
2021 ◽  
Author(s):  
Hong Yan Miao ◽  
Martin levesque ◽  
Frederick Gosselin

The inverse problem of determining how to shot peen a plate such that it deforms into a desired target shape is a challenge in the peen forming industry. While peening thick plates uniformly on one side results in a spherical shape, with the same curvature in all directions, complex peening patterns are required to form other shapes, such as cylinders and saddles found on fuselages and wing skin panels. In this study, we present an optimization procedure to automatically compute shot peening patterns. This procedure relies on an idealized model of the peen forming process, where the effect of the treatment is modeled by in-plane expansion of the peened areas, and on an off-the-shelf optimization algorithm. For validation purposes, we peen formed three 305 X 305 X 4.9 mm and two 762 X 762 X 4.9mm 2024--T3 aluminium alloy plates into cylindrical and saddle shapes using the same peening treatment. The obtained shapes qualitatively match simulations. For 305 X 305 X 4.9mm plates, the relative differences had the same distribution and were of the same order of magnitude as initial out-of-plane deviations measured on the as-received plates.


2014 ◽  
Vol 1052 ◽  
pp. 477-481 ◽  
Author(s):  
Ming Tao Wang ◽  
Yuan Song Zeng ◽  
Xue Piao Bai ◽  
Xia Huang

Pre-stress shot peen forming is a metal forming process widely used in aeronautical industry. The test parts of 7150 Al alloy of different thickness were pre-stress shot peen formed. The deformation rule of those parts was investigated by means of changing the peening coverage. The results show that the radius of curvature of the parts will enhance gradually with increasing of the plate’s thickness. In addition, enhancing peening coverage could raise the deformation in the case of that the thickness and peening parameters are unchanged. Furthermore, the minimum radius of curvature of the 8mm plate after saturation pre-stress shot peen forming could reach 499mm.


Author(s):  
Yongxiang Hu ◽  
Yefei Han ◽  
Zhenqiang Yao ◽  
Jun Hu

Laser peen forming (LPF) is a purely mechanical forming method achieved through the use of laser energy to form complex shapes or to modify curvatures. It is flexible and independent of tool inaccuracies that result from wear and deflection. Its nonthermal process makes it possible to form without material degradation or even improve them by inducing compressive stress over the target surface. In the present study, a fully three-dimensional numerical model is developed to simulate the forming process of laser peen forming. The simulation procedure is composed of several steps mainly including the shock pressure prediction, the modal analysis, and the forming process calculation. System critical damping is introduced to prevent unnecessary long post-shock residual oscillations and to greatly decrease the solution time for simulation. The bending profiles and angles with different thicknesses are experimentally measured at different scanning lines and scanning velocities to understand the process and validate the numerical model. The calculated bending profiles and angles agree well with the trend of the measured results. But it is found that simulations with the Johnson–Cook model are more consistent, matching the experimental results for the thick sheet metal with a convex bending, while the elastic-perfectly-plastic model produces a better agreement even though with underestimated values for the thinner sheet metal with a concave bending. The reason for this phenomenon is discussed, combining the effects of strain rate and feature size. Both the simulation and the experiments show that a continuous decrease in bending angle from concave to convex is observed with increasing specimen thickness in general. Large bending distortion is easier to induce by generating a concave curvature with LPF, and the angle of bending distortion depends on the number of laser shocks.


2008 ◽  
Vol 33-37 ◽  
pp. 1055-1062 ◽  
Author(s):  
Xamxinur Abdikerem ◽  
Zhong Hua Xu ◽  
Mamtimin Gheni

In this study, to conduct numerical simulation of desert physiognomy forming process in fixed, semi-fixed and free sand desert field by considering the sand flow process by wind, the numerical model based on the hydrodynamics and sand grains kinemics are proposed. For analyze the actual characteristic of sand movement phenomenon, the stream flow field and desert flow field are introduced and mathematical model for numerical analysis are established by considering the sand shape, size and mass in order to describe the fixed, semi-fixed and fully free sand desert physiographical process. Then according to the real fixed, semi-fixed and free sand flow field by coupling with stream flow field, several models are made and numerical simulations are conducted.


Shot Peening ◽  
2006 ◽  
pp. 44-52 ◽  
Author(s):  
Frank Wüstefeld ◽  
Wolfgang Linnemann ◽  
Stefan Kittel

2011 ◽  
Vol 291-294 ◽  
pp. 585-589
Author(s):  
Jin Duo Ye ◽  
Zhe Li ◽  
Yu Ting Xi

Understanding the mechanism of the forming of the welded pipe may help the engineer to design the shape of forming rollers and forming technology. It is hard to study the forming process of the welded pipe by both the method of experiment and numerical modeling because of too much nonlinear factors included in the forming process such as elastic-plastic large deformation and non linear contact. Although many research works have been conducted in this field by the method of experiment or numerical modeling, but few of the works deal with the whole forming process of the welded pipe. The main difficulties in the numerical modeling are of huge computational labor time, witch has been over the ability of the hardware and software of the computer. The whole process of roll forming of welded pipe has been simulated by nonlinear finite element method with ANSYS and LS-DYNA solver, the distribution of both stresses and strains have been got successfully. Mapping meshes and the rigid models for rollers have been used in the analysis in order to decrease the number of the elements. Numerical results and parameter study have shown that the forming rollers of both the level and vertical are the key factors to the forming process. It is believe that the method used in the paper can also be used to study the forming process of both cage roll forming and flexible forming.


Sign in / Sign up

Export Citation Format

Share Document