The relation between elastic diffraction scattering and dynamics of multiple meson production in the very-high-energy region

1966 ◽  
Vol 43 (1) ◽  
pp. 43-70 ◽  
Author(s):  
H. Fukuda ◽  
C. Iso
2002 ◽  
Vol 19 (1) ◽  
pp. 26-28 ◽  
Author(s):  
Kyoshi Nishijima

AbstractWe have observed eight AGN since 1993 in the energy region above several hundred GeV using the CANGAROO telescopes. We observed Mrk 421 for ten nights with the CANGAROO-II 10 m telescope during its active state in early 2001 using the very large zenith angle technique. Our preliminary result implies the detection of gamma-ray emission from Mrk 421 in the energy range above 9.3 TeV. The high energy peaked BL Lacs (HBLs) PKS 2005–489 and PKS 2155–304 have been also observed. No statistically significant signals are found for both HBLs and flux upper limits are obtained. A summary of results of observations of AGN is presented in this paper.


1964 ◽  
Vol 82 (1) ◽  
pp. 3-81 ◽  
Author(s):  
Evgenii L. Feinberg ◽  
Dmitrii S. Chernavskii

2021 ◽  
Vol 11 (9) ◽  
pp. 4010
Author(s):  
Seon-Chil Kim

In the field of medical radiation shielding, there is an extensive body of research on process technologies for ecofriendly shielding materials that could replace lead. In particular, the particle size and arrangement of the shielding material when blended with a polymer material affect shielding performance. In this study, we observed how the particle size of the shielding material affects shielding performance. Performance and particle structure were observed for every shielding sheet, which were fabricated by mixing microparticles and nanoparticles with a polymer material using the same process. We observed that the smaller the particle size was, the higher both the clustering and shielding effects in the high-energy region. Thus, shielding performance can be improved. In the low-dose region, the effect of particle size on shielding performance was insignificant. Moreover, the shielding sheet in which nanoparticles and microsized particles were mixed showed similar performance to that of the shielding sheet containing only microsized particles. Findings indicate that, when fabricating a shielding sheet using a polymer material, the smaller the particles in the high-energy region are, the better the shielding performance is. However, in the low-energy region, the effect of the particles is insignificant.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Whitmore ◽  
R. I. Mackay ◽  
M. van Herk ◽  
J. K. Jones ◽  
R. M. Jones

AbstractThis paper presents the first demonstration of deeply penetrating dose delivery using focused very high energy electron (VHEE) beams using quadrupole magnets in Monte Carlo simulations. We show that the focal point is readily modified by linearly changing the quadrupole magnet strength only. We also present a weighted sum of focused electron beams to form a spread-out electron peak (SOEP) over a target region. This has a significantly reduced entrance dose compared to a proton-based spread-out Bragg peak (SOBP). Very high energy electron (VHEE) beams are an exciting prospect in external beam radiotherapy. VHEEs are less sensitive to inhomogeneities than proton and photon beams, have a deep dose reach and could potentially be used to deliver FLASH radiotherapy. The dose distributions of unfocused VHEE produce high entrance and exit doses compared to other radiotherapy modalities unless focusing is employed, and in this case the entrance dose is considerably improved over existing radiations. We have investigated both symmetric and asymmetric focusing as well as focusing with a range of beam energies.


1957 ◽  
Vol 18 (3) ◽  
pp. 264-268 ◽  
Author(s):  
Daisuke Ito ◽  
Tetsuro Kobayashi ◽  
Miwae Yamazaki ◽  
Shigeo Minami

1981 ◽  
Vol 8 (3) ◽  
pp. 205-213 ◽  
Author(s):  
Kisei Kinoshita ◽  
Akira Minaka ◽  
Hiroyuki Sumiyoshi

Sign in / Sign up

Export Citation Format

Share Document