scholarly journals π--PInteraction in High Energy Region

1957 ◽  
Vol 18 (3) ◽  
pp. 264-268 ◽  
Author(s):  
Daisuke Ito ◽  
Tetsuro Kobayashi ◽  
Miwae Yamazaki ◽  
Shigeo Minami
2021 ◽  
Vol 11 (9) ◽  
pp. 4010
Author(s):  
Seon-Chil Kim

In the field of medical radiation shielding, there is an extensive body of research on process technologies for ecofriendly shielding materials that could replace lead. In particular, the particle size and arrangement of the shielding material when blended with a polymer material affect shielding performance. In this study, we observed how the particle size of the shielding material affects shielding performance. Performance and particle structure were observed for every shielding sheet, which were fabricated by mixing microparticles and nanoparticles with a polymer material using the same process. We observed that the smaller the particle size was, the higher both the clustering and shielding effects in the high-energy region. Thus, shielding performance can be improved. In the low-dose region, the effect of particle size on shielding performance was insignificant. Moreover, the shielding sheet in which nanoparticles and microsized particles were mixed showed similar performance to that of the shielding sheet containing only microsized particles. Findings indicate that, when fabricating a shielding sheet using a polymer material, the smaller the particles in the high-energy region are, the better the shielding performance is. However, in the low-energy region, the effect of the particles is insignificant.


Author(s):  
A. Fasso ◽  
K. Göbel ◽  
M. Höfert ◽  
J. Ranft ◽  
G. Stevenson

1987 ◽  
Vol 36 (4) ◽  
pp. 1656-1662 ◽  
Author(s):  
G. C. Saha ◽  
Shyamal Datta ◽  
S. C. Mukherjee

2018 ◽  
Vol 33 (2) ◽  
pp. 162-165 ◽  
Author(s):  
C. M. Heirwegh ◽  
W. T. Elam ◽  
D. T. Flannery ◽  
A. C. Allwood

Calibration of the prototype Planetary Instrument for X-ray Lithochemistry (PIXL) selected for Mars 2020 has commenced with an empirical derivation of the X-ray optic transmission profile. Through a straightforward method of dividing a measured “blank” spectrum over one calculated assuming no optic influence, a rudimentary profile was formed. A simple boxcar-smoothing algorithm was implemented to approximate the complete profile that was incorporated into PIQUANT. Use of this form of smoothing differs from the more conventional approach of using a parameter-based function to complete the profile. Comparison of element-specific correction factors, taken from a measurement of NIST SRM 610, was used to assess the accuracy of the new profile. Improvement in the low- to mid-energy portion of the data was apparent though the high-energy region diverged from unity, and thus, requires further refinement.


2012 ◽  
Vol 170-173 ◽  
pp. 3312-3315
Author(s):  
Dong Chen ◽  
Chao Xu

The anti-cotunnite magnesium silicide was constructed, and its absorption coefficient, dielectric function and loss function have been investigated through the plane-wave pseudo- potential calculations based on the density functional theory. In our scheme, we consider the Mg2Si crystal without defects or cracks. Significant features have been observed for the optical properties in the low-energy region and the high-energy region. The main focus of this paper is to determine the high-pressure optical properties of Mg2Si and find out if this material can be used as high-performance thermoelectric devices.


Sign in / Sign up

Export Citation Format

Share Document