The application of fractography to demonstrate the presence of crack tip residual stresses during programmed fatigue crack propagation in mild steel

1976 ◽  
Vol 7 (11) ◽  
pp. 1655-1660
Author(s):  
A. E. Inckle ◽  
G. Birkbeck ◽  
G. W. J. Waldron
2020 ◽  
Vol 92 (9) ◽  
pp. 1521-1536
Author(s):  
Clive Bucknall ◽  
Volker Altstädt ◽  
Dietmar Auhl ◽  
Paul Buckley ◽  
Dirk Dijkstra ◽  
...  

AbstractFatigue tests were carried out on compression mouldings supplied by a leading polymer manufacturer. They were made from three batches of ultra-high molecular weight polyethylene (UHMWPE) with weight-average relative molar masses, ${\overline{M}}_{\mathrm{W}}$, of about 0.6 × 106, 5 × 106 and 9 × 106. In 10 mm thick compact tension specimens, crack propagation was so erratic that it was impossible to follow standard procedure, where crack-tip stress intensity amplitude, ΔK, is raised incrementally, and the resulting crack propagation rate, da/dN, increases, following the Paris equation, where a is crack length and N is number of cycles. Instead, most of the tests were conducted at fixed high values of ΔK. Typically, da/dN then started at a high level, but decreased irregularly during the test. Micrographs of fracture surfaces showed that crack propagation was sporadic in these specimens. In one test, at ΔK = 2.3 MPa m0.5, there were crack-arrest marks at intervals Δa of about 2 μm, while the number of cycles between individual growth steps increased from 1 to more than 1000 and the fracture surface showed increasing evidence of plastic deformation. It is concluded that sporadic crack propagation was caused by energy-dissipating crazing, which was initiated close to the crack tip under plane strain conditions in mouldings that were not fully consolidated. By contrast, fatigue crack propagation in 4 mm thick specimens followed the Paris equation approximately. The results from all four reports on this project are reviewed, and the possibility of using fatigue testing as a quality assurance procedure for melt-processed UHMWPE is discussed.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5477-5482 ◽  
Author(s):  
ATSUMICHI KUSHIBE ◽  
TSUTOMU TANAKA ◽  
YORINOBU TAKIGAWA ◽  
KENJI HIGASHI

The crack propagation properties for ultrafine-grained Zn -22 wt % Al alloy during low cycle fatigue (LCF) in the superplastic region and the non-superplastic region were investigated and compared with the corresponding results for several other materials. With the Zn - 22 wt % Al alloy, it was possible to conduct LCF tests even at high strain amplitudes of more than ±5%, and the alloy appeared to exhibit a longer LCF lifetime than the other materials examined. The fatigue life is higher in the superplastic region than in the non-superplastic region. The rate of fatigue crack propagation in the superplastic region is lower than that in the other materials in the high J-integral range. In addition, the formation of cavities and crack branching were observed around a crack tip in the supereplastic region. We therefore conclude that the formation of cavities and secondary cracks as a result of the relaxation of stress concentration around the crack tip results in a reduction in the rate of fatigue crack propagation and results in a longer fatigue lifetime.


1966 ◽  
Vol 5 (1) ◽  
pp. 19-34 ◽  
Author(s):  
D.G. Bellow ◽  
B. R. Long

Author(s):  
Xin Wang

It has been observed that the loss of crack tip constraint leads to enhanced resistance to both cleavage and ductile tearing. Recent developments on constraint-based fracture mechanics have enabled the practical assessment of defective components including the constraint effect. In fatigue analyses, it is common practice to use the Paris crack propagation law, which is based on the stress intensity factor alone. Although in recent years several research attempts have been made to investigate the effect of constraint on fatigue, how to quantify the effect of crack tip constraint on the fatigue crack propagation rate is still an open issue. In this paper, the effect of crack tip constraint on the fatigue crack propagation of small cracks at notched plates is investigated. A fatigue crack propagation rate model developed earlier which incorporates both low and high constraint conditions is used. It is shown that the effect of constraint on crack propagation rate is significant when the crack is small (within the stress concentration of the notches). This effect can be accounted for by using the fatigue crack propagation rate model.


2013 ◽  
Vol 842 ◽  
pp. 455-461
Author(s):  
Yu Sha ◽  
Shi Gang Bai ◽  
Ya Hui Wang

Elastic–plastic finite element analyses have been performed to study the compressive stress effect on fatigue crack growth under applied tension–compression loading. The near crack tip stress, crack tip opening displacement and crack tip plastic zone size were obtained for a kinematic hardening material. The results have shown that the near crack tip local stress, displacement and reverse plastic zone size are controlled by the maximum stress intensity factors Kmax and the applied compressive stress σmaxcom under tension–compression. Based on the finite element analysis results, a fatigue crack propagation model using Kmax and σmaxcom as a parameters under tension–compression loading has been developed.The models under tension–compression loading agreed well with experimental observations.


Sign in / Sign up

Export Citation Format

Share Document