A weakly nonlinear water wave model taking into account dispersion of wave phase velocity

2002 ◽  
Vol 20 (2) ◽  
pp. 107-112 ◽  
Author(s):  
Li Rui-jie ◽  
Dong-Young Lee
Geophysics ◽  
2013 ◽  
Vol 78 (2) ◽  
pp. WA99-WA109 ◽  
Author(s):  
Aurélien Mordret ◽  
Nikolaï M. Shapiro ◽  
Satish S. Singh ◽  
Philippe Roux ◽  
Olav I. Barkved

We applied the Helmholtz tomography technique to 6.5 hours of continuous seismic noise record data set of the Valhall Life of Field network. This network, that has 2320 receivers, allows us to perform a multifrequency, high-resolution, ambient-noise Scholte wave phase velocity tomography at Valhall. First, we computed crosscorrelations between all possible pairs of receivers to convert every station into a virtual source recorded by all other receivers. Our next step was to measure phase traveltimes and spectral amplitudes at different periods from crosscorrelations between stations separated by distances between two and six wavelengths. This is done in a straightforward fashion in the Fourier domain. Then, we interpolated these measurements onto a regular grid and computed local gradients of traveltimes and local Laplacians of the amplitude to infer local phase velocities using a frequency dependent Eikonal equation. This procedure was repeated for all 2320 virtual sources and final phase velocities were estimated as statistical average from all these measurements at each grid points. The resulting phase velocities for periods between 0.65 and 1.6 s demonstrate a significant dispersion with an increase of the phase velocities at longer periods. Their lateral distribution is found in very good agreement with previous ambient noise tomography done at Valhall as well as with a full waveform inversion P-wave model computed from an active seismic data set. We put effort into assessing the spatial resolution of our tomography with checkerboard tests, and we discuss the influence of the interpolation methods on the quality of our final models.


2006 ◽  
Vol 33 (18) ◽  
pp. n/a-n/a ◽  
Author(s):  
Hidetaka Shiraishi ◽  
Tatsuro Matsuoka ◽  
Hiroshi Asanuma

2020 ◽  
Vol 110 (3) ◽  
pp. 1359-1371
Author(s):  
Lun Li ◽  
Yuanyuan V. Fu

ABSTRACT An understanding of mantle dynamics occurring beneath the Tibetan plateau requires a detailed image of its seismic velocity and anisotropic structure. Surface waves at long periods (>50  s) could provide such critical information. Though Rayleigh-wave phase velocity maps have been constructed in the Tibetan regions using ambient-noise tomography (ANT) and regional earthquake surface-wave tomography, Love-wave phase velocity maps, especially those at longer periods (>50  s), are rare. In this study, two-plane-wave teleseismic surface-wave tomography is applied to develop 2D Rayleigh-wave and Love-wave phase velocity maps at periods between 20 and 143 s across eastern and central Tibet and its surroundings using four temporary broadband seismic experiments. These phase velocity maps share similar patterns and show high consistency with those previously obtained from ANT at overlapping periods (20–50 s), whereas our phase velocity maps carry useful information at longer periods (50–143 s). Prominent slow velocity is imaged at periods of 20–143 s beneath the interior of the Tibetan plateau (i.e., the Songpan–Ganzi terrane, the Qiangtang terrane, and the Lhasa terrane), implying the existence of thick Tibetan crust along with warm and weak Tibetan lithosphere. In contrast, the dispersal of fast velocity anomalies coincides with mechanically strong, cold tectonic blocks, such as the Sichuan basin and the Qaidam basin. These phase velocity maps could be used to construct 3D shear-wave velocity and radial seismic anisotropy models of the crust and upper mantle down to 250 km across the eastern and central Tibetan plateau.


Geophysics ◽  
1996 ◽  
Vol 61 (2) ◽  
pp. 437-443 ◽  
Author(s):  
Ningya Cheng ◽  
Chuen Hon Cheng

Field data sets collected by an array monopole acoustic logging tool and a shear wave logging tool are processed and interpreted. The P‐ and S‐wave velocities of the formation are determined by threshold detection with cross‐correlation correction from the full waveform and the shear‐wave log, respectively. The array monopole acoustic logging data are also processed using the extended Prony’s method to estimate the borehole Stoneley wave phase velocity and attenuation as a function of frequency. The well formation between depths of 2950 and 3150 ft (899 and 960 m) can be described as an isotropic elastic medium. The inverted [Formula: see text] from the Stoneley wave phase velocity is in excellent agreement with the shear‐wave log results in this section. The well formation between the depths of 3715 and 3780 ft (1132 and 1152 m) can be described as a porous medium with shear‐wave velocity anisotropy about 10% to 20% and with the symmetry axis perpendicular to the borehole axis. The disagreement between the shear‐wave velocity from the Stoneley wave inversion and the direct shear‐wave log velocity in this section is beyond the errors in the measurements. Estimated permeabilities from low‐frequency Stoneley wave velocity and attenuation data are in good agreement with the core measurements. Also it is proven that the formation permeability is not the cause of the discrepancy. From the estimated “shear/pseudo‐Rayleigh” phase velocities in the array monopole log and the 3-D finite‐difference synthetics in the anisotropic formation, the discrepancy can best be explained as shear‐wave anisotropy.


Sign in / Sign up

Export Citation Format

Share Document