scholarly journals Probing in vitro translation products with monoclonal antibodies to chlorophylla/b-binding proteins of barley thylakoids

1988 ◽  
Vol 53 (5) ◽  
pp. 297-308 ◽  
Author(s):  
Gunilla Høyer-Hansen ◽  
Lisbeth Skou Hønberg ◽  
Roberto Bassi
1985 ◽  
Vol 50 (4) ◽  
pp. 211-221 ◽  
Author(s):  
Gunilla Høyer-Hansen ◽  
Lisbeth Skou Hønberg ◽  
Peter Bordier Høj

2015 ◽  
Vol 472 (1) ◽  
pp. 111-119 ◽  
Author(s):  
Baptiste Panthu ◽  
Fabrice Mure ◽  
Henri Gruffat ◽  
Theophile Ohlmann

The present study shows the impact of ribosome binding proteins on in vitro translation.


2016 ◽  
Vol 44 (12) ◽  
pp. 5491-5503 ◽  
Author(s):  
Sawsan Napthine ◽  
Emmely E. Treffers ◽  
Susanne Bell ◽  
Ian Goodfellow ◽  
Ying Fang ◽  
...  

Abstract Translational control through programmed ribosomal frameshifting (PRF) is exploited widely by viruses and increasingly documented in cellular genes. Frameshifting is induced by mRNA secondary structures that compromise ribosome fidelity during decoding of a heptanucleotide ‘slippery’ sequence. The nsp2 PRF signal of porcine reproductive and respiratory syndrome virus is distinctive in directing both −2 and −1 PRF and in its requirement for a trans-acting protein factor, the viral replicase subunit nsp1β. Here we show that the the trans-activation of frameshifting is carried out by a protein complex composed of nsp1β and a cellular poly(C) binding protein (PCBP). From the results of in vitro translation and electrophoretic mobility shift assays, we demonstrate that a PCBP/nsp1β complex binds to a C-rich sequence downstream of the slippery sequence and here mimics the activity of a structured mRNA stimulator of PRF. This is the first description of a role for a trans-acting cellular protein in PRF. The discovery broadens the repertoire of activities associated with poly(C) binding proteins and prototypes a new class of virus–host interactions.


2002 ◽  
Vol 41 (03) ◽  
pp. 129-134 ◽  
Author(s):  
A. Wolski ◽  
E. Palombo-Kinne ◽  
F. Wolf ◽  
F. Emmrich ◽  
W. Becker ◽  
...  

Summary Aim: The cellular joint infiltrate in rheumatoid arthritis patients is rich in CD4-positive T-helper lymphocytes and macrophages, rendering anti-CD4 monoclonal antibodies (mAbs) suitable for specific immunoscintigraphy of human/ experimental arthritis. Following intravenous injection, however, mAbs are present both in the free form and bound to CD4-positive, circulating monocytes and T-cells. Thus, the present study aimed at analyzing the relative contribution of the free and the cell-bound component to the imaging of inflamed joints in experimental adjuvant arthritis (AA). Methods: AA rat peritoneal macrophages or lymph node T-cells were incubated in vitro with saturating amounts of 99mTc-anti-CD4 mAb (W3/25) and injected i.v. into rats with AA. Results: In vitro release of 99mTc-anti-CD4 mAb from the cells was limited (on average 1.57%/h for macrophages and 0.84%/h for T-cells). Following i.v. injection, whole body/joint scans and tissue measurements showed only negligible accumulation of radioactivity in inflamed ankle joints (tissue: 0.22 and 0.34% of the injected activity, respectively), whereas the radioactivity was concentrated in liver (tissue: 79% and 71%, respectively), kidney, and urinary bladder. Unlike macrophages, however, anti-CD4 mAb-coated T-cells significantly accumulated in lymphoid organs, the inflamed synovial membrane of the ankle joints, as well as in elbow and knee joints. Conclusion: While the overall contribution of cell-bound mAbs to the imaging of arthritic joints with anti-CD4 mAbs is minimal, differential accumulation of macrophages and T-cells in lymphoid organs and the inflamed synovial membrane indicates preferential migration patterns of these 2 cell populations in arthritic rats. Although only validated for 99mTc-anti-CD4 mAbs, extrapolation of the results to other anticellular mAbs with similar affinity for their antigen may be possible.


1987 ◽  
Vol 26 (01) ◽  
pp. 1-6 ◽  
Author(s):  
S. Selvaraj ◽  
M. R. Suresh ◽  
G. McLean ◽  
D. Willans ◽  
C. Turner ◽  
...  

The role of glycoconjugates in tumor cell differentiation has been well documented. We have examined the expression of the two anomers of the Thomsen-Friedenreich antigen on the surface of human, canine and murine tumor cell membranes both in vitro and in vivo. This has been accomplished through the synthesis of the disaccharide terminal residues in both a and ß configuration. Both entities were used to generate murine monoclonal antibodies which recognized the carbohydrate determinants. The determination of fine specificities of these antibodies was effected by means of cellular uptake, immunohistopathology and immunoscintigraphy. Examination of pathological specimens of human and canine tumor tissue indicated that the expressed antigen was in the β configuration. More than 89% of all human carcinomas tested expressed the antigen in the above anomeric form. The combination of synthetic antigens and monoclonal antibodies raised specifically against them provide us with invaluable tools for the study of tumor marker expression in humans and their respective animal tumor models.


Sign in / Sign up

Export Citation Format

Share Document