Interannual and long-term variation in the nearshore fish community of the mesohaline Hudson River estuary

Estuaries ◽  
2004 ◽  
Vol 27 (4) ◽  
pp. 659-669 ◽  
Author(s):  
Thomas P. Hurst ◽  
Kim A. McKown ◽  
David O. Conover

<em>Abstract.</em>—Despite recent successes in eliminating or reducing many point sources of chemical contaminants, sediments in the Hudson River Estuary are still highly contaminated with lipophilic and highly persistent polychlorinated biphenyls (PCBs), polychlorinated dibenzo-<em>p</em>-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polycyclic aromatic hydrocarbons (PAHs). These have been shown to bioaccumulate to high levels in resource species and other key ecological components of the Hudson River food web. Resource managers and stewards must consider the possible toxic effects of these pollutants on the Hudson River biota, including its fish community; however, few studies have directly investigated these effects. A series of toxicological studies on Atlantic tomcod <em>Microgadus tomcod </em>from the Hudson River Estuary have demonstrated profound and broad-based changes in response to local contaminants. Levels of contaminants in the tissues of different life stages of tomcod from the Hudson River Estuary far exceed those in tomcod from other Atlantic Coast estuaries. More importantly, a combination of field and laboratory studies has demonstrated molecular to population level perturbations in tomcod from the Hudson River, all of which are consistent with chemical exposures and many of which appear to be mechanistically linked. These effects include induction of hepatic expression of cytochrome P4501A1 mRNA, high levels of hepatic DNA damage, somatic mutations at an oncogene locus critical to the initiation of chemical carcinogenesis, elevated prevalence of gross and histologically defined hepatic tumors, truncated age structure, and dramatic resistance at the molecular and organismal levels to halogenated aromatic hydrocarbons (HAHs). Resistance, a population level effect, was observed in the toxic responses of tomcod embryos and larvae to 2,3,7,8-tetrachlorodibenzo-<em>p</em>-dioxin (TCDD) and TCDD-like PCBs, but not PAHs. Because young of the year tomcod are a critical node in the Hudson River food chain, their evolved resistance to HAHs and high body burden of these and related contaminants has likely resulted in the trophic transfer of these contaminants to secondary and tertiary consumers of the Hudson River, including important resource species, and an elevated tissue burden of these contaminants in those consumers. In total, these studies are consistent with the hypothesis that exposure to Hudson River-borne contaminants has significantly altered its tomcod population and perhaps evoked broad change in the Hudson River fish community.


1998 ◽  
Vol 34 (2-3) ◽  
pp. 214-222 ◽  
Author(s):  
M. G. Menon ◽  
R. J. Gibbs ◽  
A. Phillips

2016 ◽  
Vol 173 (12) ◽  
pp. 3999-4037 ◽  
Author(s):  
Michael Shelby ◽  
Stéphan T. Grilli ◽  
Annette R. Grilli

<em>Abstract.</em>—Our objectives were to determine if striped bass <em>Morone saxatilis </em>larvae were present in the East River and if so, could they have come from the Hudson River. To meet the first objective, we examined entrainment data collected at the Charles Poletti Power Plant (Poletti) during the years 1999 through 2002. To meet the second objective, we examined the simulated release of 168,000 neutrally buoyant, passive particles in the lower Hudson River Estuary, using a particle-tracking model that was linked to an estuarine circulation model. We also compared the abundance of striped bass post-yolk-sac larvae (PYSL) collected in the East River at Poletti with the abundance of striped bass PYSL collected in the Battery region of the lower Hudson River Estuary and the abundance of striped bass PYSL in the Battery region with freshwater flow in the estuary. Striped bass PYSL were collected by entrainment sampling in the East River at Poletti every year from 1999 through 2002. The striped bass PYSL in the East River probably came from the Hudson River Estuary because the median probability that neutrally buoyant, passive particles would be transported from the lower Hudson River Estuary to the upper East River and western Long Island Sound was 0.12, with a median transport time of 2 d, and because the mean density of striped bass PYSL was highest at Poletti and in the Battery region during the same year. The abundance of striped bass PYSL in the Battery region was higher when freshwater flow during May and early June was higher.


Sign in / Sign up

Export Citation Format

Share Document