A case study on fractal simulation of forest fire spread

2000 ◽  
Vol 43 (S1) ◽  
pp. 104-112 ◽  
Author(s):  
Qijiang Zhu ◽  
Taizong Rong ◽  
Rui Sun
Author(s):  
W. Jiang ◽  
F. Wang ◽  
Q. Meng ◽  
Z. Li ◽  
B. Liu ◽  
...  

This paper presents a new standardized data format named Fire Markup Language (FireML), extended by the Geography Markup Language (GML) of OGC, to elaborate upon the fire hazard model. The proposed FireML is able to standardize the input and output documents of a fire model for effectively communicating with different disaster management systems to ensure a good interoperability. To demonstrate the usage of FireML and testify its feasibility, an adopted forest fire spread model being compatible with FireML is described. And a 3DGIS disaster management system is developed to simulate the dynamic procedure of forest fire spread with the defined FireML documents. The proposed approach will enlighten ones who work on other disaster models' standardization work.


2013 ◽  
Vol 13 (9) ◽  
pp. 2157-2167 ◽  
Author(s):  
C. Schunk ◽  
C. Wastl ◽  
M. Leuchner ◽  
C. Schuster ◽  
A. Menzel

Abstract. Forest fire danger rating based on sparse meteorological stations is known to be potentially misleading when assigned to larger areas of complex topography. This case study examines several fire danger indices based on data from two meteorological stations at different elevations during a major drought period. This drought was caused by a persistent high pressure system, inducing a pronounced temperature inversion and its associated thermal belt with much warmer, dryer conditions in intermediate elevations. Thus, a massive drying of fuels, leading to higher fire danger levels, and multiple fire occurrences at mid-slope positions were contrasted by moderate fire danger especially in the valleys. The ability of fire danger indices to resolve this situation was studied based on a comparison with the actual fire danger as determined from expert observations, fire occurrences and fuel moisture measurements. The results revealed that, during temperature inversion, differences in daily cycles of meteorological parameters influence fire danger and that these are not resolved by standard meteorological stations and fire danger indices (calculated on a once-a-day basis). Additional stations in higher locations or high-resolution meteorological models combined with fire danger indices accepting at least hourly input data may allow reasonable fire danger calculations under these circumstances.


2017 ◽  
Vol 57 (1) ◽  
Author(s):  
Tin Lukić ◽  
Predrag Marić ◽  
Ivana Hrnjak ◽  
Milivoj B. Gavrilov ◽  
Dragan Mladjan ◽  
...  
Keyword(s):  

2016 ◽  
Vol 15 (1) ◽  
pp. 85-92
Author(s):  
Ágoston Restás

It is commonly known that firefighting is very expensive solution; therefore it isn’t useless to study it by the criteria of efficiency. But the meaning of efficiency for fire managers can be different from the meaning of efficiency for economists. From an economic viewpoint, it is stricter than from a technical view. Method: this research used geometric aspects of the fire spread created rectangular and concentric circles models and used basic mathematic calculations and logical conclusions. Results and discussion: The rectangular model shows the criteria of economic efficiency of firefighting. Moreover, the results from rectangular model can be transferred also to the section of concentric circles model. Based on the concentric circle model we can define both the economic efficiency of fighting forest fire and minimal criteria of successful suppression expressed by the elementary information we have regarding the actual fire.


Author(s):  
Evdokia Sotirova ◽  
Emilia Velizarova ◽  
Stefka Fidanova ◽  
Krassimir Atanassov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document