Remotely sensed canopy temperature based evapotranspiration models for wheat

1986 ◽  
Vol 14 (2) ◽  
pp. 87-97
Author(s):  
S. K. Saha ◽  
Ajai
2014 ◽  
Vol 11 (13) ◽  
pp. 3437-3451 ◽  
Author(s):  
P. N. Foster ◽  
I. C. Prentice ◽  
C. Morfopoulos ◽  
M. Siddall ◽  
M. van Weele

Abstract. Isoprene is important in atmospheric chemistry, but its seasonal emission pattern – especially in the tropics, where most isoprene is emitted – is incompletely understood. We set out to discover generalized relationships applicable across many biomes between large-scale isoprene emission and a series of potential predictor variables, including both observed and model-estimated variables related to gross primary production (GPP) and canopy temperature. We used remotely sensed atmospheric concentrations of formaldehyde, an intermediate oxidation product of isoprene, as a proxy for isoprene emission in 22 regions selected to span high to low latitudes, to sample major biomes, and to minimize interference from pyrogenic sources of volatile organic compounds that could interfere with the isoprene signal. Formaldehyde concentrations showed the highest average seasonal correlations with remotely sensed (r = 0.85) and model-estimated (r = 0.80) canopy temperatures. Both variables predicted formaldehyde concentrations better than air temperature (r= 0.56) and a "reference" isoprene model that combines GPP and an exponential function of temperature (r = 0.49), and far better than either remotely sensed green vegetation cover, fPAR (r = 0.25) or model-estimated GPP (r = 0.14). Gross primary production in tropical regions was anti-correlated with formaldehyde concentration (r = −0.30), which peaks during the dry season. Our results were most reliable in the tropics, where formaldehyde observational errors were the least. The tropics are of particular interest because they are the greatest source of isoprene emission as well as the region where previous modelling attempts have been least successful. We conjecture that positive correlations of isoprene emission with GPP and air temperature (as found in temperate forests) may arise simply because both covary with canopy temperature, peaking during the relatively short growing season. The lack of a general correlation between GPP and formaldehyde concentration in the seasonal cycle is consistent with experimental evidence that isoprene emission rates are largely decoupled from photosynthetic rates, and with the likely adaptive significance of isoprene emission in protecting leaves against heat damage and oxidative stress.


2021 ◽  
Author(s):  
Blake L McCullough-Sanden ◽  
James McBride ◽  
Daniel Urban ◽  
Robert Heilmayr ◽  
Nina Kilham ◽  
...  

2013 ◽  
Vol 10 (12) ◽  
pp. 19571-19601
Author(s):  
P. N. Foster ◽  
I. C. Prentice ◽  
C. Morfopoulos ◽  
M. Siddall ◽  
M. van Weele

Abstract. Isoprene is important in atmospheric chemistry, but its seasonal emission pattern – especially in the tropics, where most isoprene is emitted – is incompletely understood. We set out to discover general, biome-independent relationships between large-scale isoprene emission and a series of potential predictor variables, including both observed and model-estimated variables related to gross primary production (GPP) and canopy temperature. To this end we used remotely sensed atmospheric concentrations of formaldehyde, an intermediate oxidation product of isoprene, as a proxy for isoprene emission in 22 regions selected to span high to low latitudes, to sample major biomes, and to minimize interference from pyrogenic sources of volatile organic compounds that could interfere with the isoprene signal. Formaldehyde concentrations showed the highest average seasonal correlations with remotely sensed (r = 0.85) and model-estimated (r = 0.80) canopy temperatures. Both variables predicted formaldehyde concentrations better than air temperature (r = 0.56) and a "reference" isoprene model that includes both temperature and GPP (r = 0.49), and far better than either remotely sensed green vegetation cover (r = 0.25) or model-estimated GPP (r = 0.14). GPP in tropical regions was anti-correlated with formaldehyde concentration (r = –0.30), which peaks during the dry season. We conjecture that the positive correlations of isoprene emission with primary production, and with air temperature, found in temperate forest regions arise simply because all three peak during the relatively short growing season. In most tropical regions, where the seasonal cycles of GPP and canopy temperature are very different, isoprene emission is revealed to depend on canopy temperature but not at all on GPP. The lack of a general correlation between GPP and formaldehyde concentration is consistent with experimental evidence that isoprene emission is decoupled from photosynthesis, and with the likely adaptive significance of isoprene emission in protecting leaves against heat damage and oxidative stress. In contrast, the high correlation between canopy temperature and formaldehyde concentration indicates the importance of including canopy temperature explicitly in large-scale models.


Data Series ◽  
10.3133/ds566 ◽  
2010 ◽  
Author(s):  
John A. Barras ◽  
John C. Brock ◽  
Robert A. Morton ◽  
Laurinda J. Travers

2020 ◽  
Vol 80 (03) ◽  
Author(s):  
Renu Pandey ◽  
Surendra Kumar Meena ◽  
Gayacharan . ◽  
Madan Pal Singh

Experiments were conducted to study the genotypic variability for tolerance to combined stresses of low availability of phosphorus (P) and drought in 14 mungbean [Vigna radiata (L.) R. Wilczek] accessions. The accessions were evaluated under four conditions viz., control (sufficient P, irrigated), low P (without P, irrigated), drought (sufficient P, withholding irrigation) and combined stresses (low P, withholding irrigation). The relative stress tolerance was estimated for 22 agro-physiological traits. The principal component analysis (PCA) and relative stress indices (RSIs) of traits exhibited significant variation among the treatments and accessions. Based on RSIs, the PCA ranking analysis showed that the accessions IC 280489, PDM 139 and IC 76491 were highly ranked and tolerant to low P, drought and combined stresses. The relative increase in component traits such as photosynthetic parameters, relative water content, above-ground biomass, seed P content and number of pods plant–1 were higher while canopy temperature and water use efficiency were reduced in tolerant accessions. In contrast, IPM 2-3 was found to be relatively sensitive to all three treatments. Tolerant accessions may be either included in the breeding program or used directly as cultivar that can be grown under low P and drought.


Sign in / Sign up

Export Citation Format

Share Document