Centrifugal separation of soap stock

1920 ◽  
Vol 4 (6) ◽  
pp. 50-51
Author(s):  
J. H. Shrader
2008 ◽  
Vol 43 (13) ◽  
pp. 3393-3416 ◽  
Author(s):  
L. M. Wang ◽  
S. Zeng ◽  
D. J. Jiang ◽  
T. M. Song

Author(s):  
Nikolai Sergeevich Molokov ◽  
Gennadiy Petrovich Kicha ◽  
Andrei Veniaminovich Nadezkin

The article considers the rationality of combined lubricating oil cleaning system in the automatically operated marine diesel engines. The system includes a self-recovering filter and a self-cleaning centrifugal purifier. This combination is found to obtain resource-saving oil using coupled with minimum engine wear and increased reliability. The full-flow filtration of oil in a die-sel engine lubricating system is necessary to protect its friction couples (bearings) from abrasive wear. Centrifugal separation contributes deep oil purification i.e. removal of insoluble impurities reducing lubricating oil service life. By means of experimental simulation there has been found a minimum value of centrifugal purifier capacity index, when engine wear reaches the lowest level and keeps stable. The dependence of engine wear on the fuel quality and centrifugal purification intensity represented by centrifugal purifier capacity index is displayed. The adequacy variance was calculated, the adequacy of the found model being checked by using Fisher criterion. The experimental design and processing of the results have been carried out using orthogonal central composite plan of the second order. Specificity of polynomial when all the points of extremum show the minimum value of engine wear was presented. The model is designed to select the proper oil purifier for forced marine diesel engines with average and increased revolutions.


Author(s):  
Tverdokhlib Igor ◽  
Spirin Anatoly

The agrobiological and physico-mechanical properties of leguminous seed plants do not allow them to be harvested without loss exclusively by combine technologies. One way to increase the productivity of the seed production process is to include stationary machines in the assembly technology for wiping and separating seed heaps. Combining these important operations with one machine will further increase the efficiency of legume seed production technologies. This work is devoted to considering ways to increase the efficiency of air-centrifugal separation and dust cleaning seed heaps. A review of recent studies and publications has shown that there is a sufficient methodological basis for determining the parameters of the process of separation of the heap and purification of the exhaust air. An analysis of the publications made it possible to determine the purpose of the research, which is to increase the efficiency of the grater-separation unit by substantiating its scheme and the method of theoretical determination of the parameters of the separation process. According to the results of previous studies, a structural scheme of the grater-separating device is proposed. The main elements of the block are a grater device, which consists of a motionless and movable corrugated discs of the separating device with separate channels for the exit of seeds, straw part of the heap, air. To increase the efficiency of the cleaning process, a blade swirler and a louvre nozzle are placed in the separating device, which provide the air flow with rotational movement around the axis of the cyclone body. In theoretical studies of the motion of particles in a rotational air flow, the simplified assumption was adopted: the particles are spherical, do not deform, and do not interact with each other, the inertia force is directed along the radius of the cyclonic chamber, the tangential and axial components of the particle velocity are equal to the corresponding components of the air velocity, and the particle resistance force determined by the Stokes law, the force of attraction is much less than the centrifugal force, so we neglect it. The obtained formulas allow one to approximately determine the parameters of the cyclone device that will ensure the separation of the seeds of legumes.


2017 ◽  
Vol 10 (3) ◽  
pp. 563
Author(s):  
Pamela Dias Rodrigues ◽  
Cristina M. Quintella
Keyword(s):  

<p>Antes de ser comercializado, o óleo vegetal extraído deve passar por um pré-tratamento, sendo o soap stock o principal subproduto desse processo, cuja composição possui alto teor de ácidos graxos. O objetivo desta prospecção foi mapear as tecnologias utilizadas para a obtenção de ácidos graxos a partir do soap stock. A busca foi realizada através do ESPACENET, utilizando a associação das palavras soap stock* or soapstock* com três IPCs que se referem à obtenção de ácidos graxos: C11B13, C12P7/64 e C11C1. Os Estados Unidos é o país com maior número de patentes seguido da China. O processo de acidificação do soap stock envolve a adição de um ácido forte para transformar os sabões em ácido graxo podendo ser facilmente separados por decantação ou centrifugação, esse tem sido o método de separação mais utilizado pelos inventores. Existem poucas patentes acerca do tema, o que torna esta tecnologia promissora na perspectiva de desenvolvimento tecnológico.</p>


2013 ◽  
Vol 11 (1) ◽  
pp. 225-242 ◽  
Author(s):  
Chunxi Lu ◽  
Yongmin Zhang ◽  
Mingxian Shi

Abstract Fluid catalytic cracking (FCC) is a dominant refining conversion process in China’s most refineries. After decades of development, China has already become one of the major FCC technology licensors in the world. In this review, the research and development (R&D) activities on FCC riser termination device (RTD) technologies in China are reviewed and discussed. Emphasis is put on the R&D of a series of advanced RTD technologies led by China University of Petroleum, Beijing, which initiated in the early 1990s when more and more China’s FCC units chose to process more residue feedstock. Followed by the guideline of three “quick”s and two “high”s, two early types of RTD systems with coupled zones for gas–solids centrifugal separation and pre-stripping were developed and applied successfully in commercial units. Significantly reduced yields of coke and dry gas due to restrained post-riser reactions and satisfactory particle recovery efficiency were achieved. These were the fender-stripper cyclone and vortex quick separator systems designed for external- and internal-riser FCC units, respectively. Later, further improvement efforts led to the development of another two RTD systems, i.e. the circulating-stripper cyclone system for external-riser units and super vortex quick separator system for internal-riser units. By now, nearly 50 applications were commissioned with a sum FCC capacity of 40.0 Mton/a, nearly one-third of China’s total FCC processing capacity. Besides, other research efforts, such as the geometry optimization efforts on LD2 type separator, the studies on RTD for down-flow riser FCC units, and the idea of non-disengager FCC unit are also discussed in this review. To accommodate to degraded feedstock, more stringent environmental regulations and new FCC process technologies, future R&D efforts on RTD technologies should be put on improvements to further satisfy the three-“quick”s and two-“high”s requirements with changing FCC operating conditions and different process requirements.


Sign in / Sign up

Export Citation Format

Share Document