scholarly journals Lipid emulsion may augment early blood pressure recovery in a rabbit model of atenolol toxicity

2009 ◽  
Vol 5 (1) ◽  
pp. 50-51 ◽  
Author(s):  
Grant Cave ◽  
Martyn Harvey
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Luana Almeida Gonzaga ◽  
Luiz Carlos Marques Vanderlei ◽  
Rayana Loch Gomes ◽  
Vitor Engrácia Valenti

2020 ◽  
Vol 39 (1) ◽  
pp. 101-106
Author(s):  
Arjen Mol ◽  
Lois R.N. Slangen ◽  
Richard J.A. van Wezel ◽  
Andrea B. Maier ◽  
Carel G.M. Meskers

2008 ◽  
Vol 86 (11) ◽  
pp. 804-814 ◽  
Author(s):  
Daniela Mokra ◽  
Ingrid Tonhajzerova ◽  
Juraj Mokry ◽  
Anna Drgova ◽  
Maria Petraskova ◽  
...  

Glucocorticoids may improve lung function in newborns with meconium aspiration syndrome (MAS), but information on the acute side effects of glucocorticoids in infants is limited. In this study using a rabbit model of MAS, we addressed the hypothesis that systemic administration of dexamethasone causes acute cardiovascular changes. Adult rabbits were treated with 2 intravenous doses of dexamethasone (0.5 mg/kg each) or saline at 0.5 h and 2.5 h after intratracheal instillation of human meconium or saline. Animals were oxygen-ventilated for 5 h after the first dose of treatment. Blood pressure, heart rate, and short-term heart rate variability (HRV) were analyzed during treatment, for 5 min immediately after each dose, and for the 5 h of the experiment. In the meconium-instilled animals, dexamethasone increased blood pressure, decreased heart rate, increased HRV parameters, and caused cardiac arrhythmia during and immediately after administration. In the saline-instilled animals, the effect of dexamethasone was inconsistent. In these animals, the acute effects of dexamethasone on blood pressure and cardiac rhythm were reversed after 30 min, whereas heart rate continued to decrease and HRV parameters continued to increase for 5 h after the first dose of dexamethasone. These effects were more pronounced in meconium-instilled animals. If systemic glucocorticoids are used in the treatment of MAS, cardiovascular side effects of glucocorticoids should be considered.


Author(s):  
Günther Krumpl ◽  
Ivan Ulč ◽  
Michaela Trebs ◽  
Pavla Kadlecová ◽  
Juri Hodisch ◽  
...  

2016 ◽  
pp. 635-642
Author(s):  
Phillip A. Low

Peripheral adrenergic function is important in the maintenance of postural normotension. It may be impaired in peripheral neuropathies, and this may be manifested as alterations in acral temperature, color, or sweating. Simple, accurate, and reproducible tests of peripheral adrenergic function are now routinely used in clinical autonomic laboratories. For noninvasive evaluation of autonomic function, tests of peripheral adrenergic function can be used to separately evaluate the vagal and adrenergic components of baroreflex sensitivity. The vagal component is derived from the heart period response to blood pressure change and the adrenergic component by the blood pressure recovery time in response to the preceding fall in blood pressure, induced by the Valsalva maneuver.This chapter describes methods used to determine peripheral adrenergic function and their value and shortcomings.


2020 ◽  
Vol 129 (3) ◽  
pp. 459-466
Author(s):  
Julian M. Stewart ◽  
Archana Kota ◽  
Mary Breige O’Donnell-Smith ◽  
Paul Visintainer ◽  
Courtney Terilli ◽  
...  

Significant initial orthostatic hypotension (IOH) occurs in ~50% of postural tachycardia syndrome (POTS) patients and 13% of controls. Heart rate and blood pressure recovery are prolonged in IOH sustaining lightheadedness; IOH is more prevalent and severe in POTS. Altered cerebral blood flow and cardiorespiratory regulation are more prevalent in POTS. Altered heart rate variability and baroreflex gain may cause nearly instantaneous lightheadedness in POTS. IOH alone fails to confer a strong probability of POTS.


Sign in / Sign up

Export Citation Format

Share Document