Virtual reality technology and surgical training- a survey of general surgeons in Ireland

2006 ◽  
Vol 175 (1) ◽  
pp. 15-19 ◽  
Author(s):  
S. A. Early ◽  
G. Roche-Nagle
2020 ◽  
Vol 134 (10) ◽  
pp. 863-866
Author(s):  
J R Abbas ◽  
J J Kenth ◽  
I A Bruce

AbstractBackgroundThe current coronavirus disease 2019 pandemic has caused unprecedented challenges to surgical training across the world. With the widespread cancellations of clinical and academic activities, educators are looking to technological advancements to help ‘bridge the gap’ and continue medical education.SolutionsSimulation-based training as the ‘gold standard’ for medical education has limitations that prevent widespread adoption outside suitably resourced centres. Virtual reality has the potential to surmount these barriers, whilst fulfilling the fundamental aim of simulation-based training to provide a safe, effective and realistic learning environment.Current limitations and insights for futureThe main limitations of virtual reality technology include comfort and the restrictive power of mobile processors. There exists a clear developmental path to address these restrictions. Continued developments of the hardware and software set to deepen immersion and widen the possibilities within surgical education.ConclusionIn the post coronavirus disease 2019 educational landscape, virtual, augmented and mixed reality technology may prove invaluable in the training of the next generation of surgeons.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yu Zhang ◽  
Dan Luo ◽  
Jia Li ◽  
Jisheng Li

The development of virtual reality technology is expected to solve traditional surgical training. The lack of methods has brought revolutionary advances in technology. The virtual surgery system based on collision detection and force feedback can enable the operator to have stronger interaction, which is an exploration of the feature of touch in virtual reality technology. Reality is an important indicator of the virtual surgical system. This article improves the realism of the system from the visual and tactile senses and uses the surrounding ball collision detection and force feedback algorithms to build a realistic surgical platform. In the virtual surgery training system, the introduction of force feedback greatly improves the sense of presence during virtual surgery interaction. The operator can feel the softness and hardness of different tissues and organs through the force feedback device. Virtual reality is an interdisciplinary comprehensive technology that has been widely used in military, film, medical, and gaming fields. Virtual reality can simulate the objective world and display it visually, making people feel immersive. Virtual surgery provides surgeons with a recyclable surgical practice platform and can help doctors perform preoperative rehearsals and predict the results of surgery. The design of collision detection and force feedback algorithms is a prerequisite to ensure the immersion and transparency of the virtual surgical training system. This article mainly introduces the collision detection and force feedback algorithm research in virtual surgery, with the intention of providing some ideas and directions for the development of virtual surgery. This paper proposes two collision detection algorithms, space decomposition method and hierarchical bounding box method, and three force feedback algorithms including spring mass point algorithm, Runge–Kutta method, and Euler method to construct virtual surgery collision detection and force feedback. Experiment with the Overall System Architecture. This paper proves through experimental results that the average collision detection time after the application of the improved collision detection and force feedback algorithm in the virtual surgery system is more than 80.7% less than the traditional method, which greatly improves the detection speed.


Work ◽  
2012 ◽  
Vol 41 ◽  
pp. 2288-2292 ◽  
Author(s):  
L. Zhang ◽  
C. Grosdemouge ◽  
V. S. Arikatla ◽  
W. Ahn ◽  
G. Sankaranarayanan ◽  
...  

2017 ◽  
Author(s):  
Nicholas Gmeiner

This project aims to provide students with disabilities the same in class learning experience through virtual reality technology, 360-degree video capture, and the use of Arduino units. These technologies will be combined to facilitate communication between teachers in physical classrooms with students in virtual classrooms. The goal is to provide a person who is affected by a disability (which makes it hard to be in a traditional classroom) the same benefits of a safe and interactive learning environment.


Sign in / Sign up

Export Citation Format

Share Document