Decoupling of surface and subsurface sutures in the Dabie orogen and a continent-collisional lithospheric-wedging model: Sr-Nd-Pb isotopic evidences of Mesozoic igneous rocks in eastern China

2003 ◽  
Vol 48 (8) ◽  
pp. 831-838 ◽  
Author(s):  
Shuguang Li ◽  
Wei Yang
2021 ◽  
pp. 1-20
Author(s):  
Xiao-Fei Qiu ◽  
Qiong Xu ◽  
Tuo Jiang ◽  
Shan-Song Lu ◽  
Long Zhao

Abstract The South Qinling block, a segment of the Yangtze craton involved in the Qinling–Dabie orogen, is critical for understanding the tectonic evolution of eastern China. However, the tectonic setting of the South Qinling block and the northern margin of the Yangtze block during middle Neoproterozoic time has long been the subject of debate, with two distinctly different models (continental rift or volcanic arc) proposed. Here, a comprehensive study of zircon U–Pb geochronology and geochemistry has been carried out on the Chengwan granitic pluton from the Suizao terrane in the South Qinling block. The granites are monzogranite and syenogranite in lithology, and are mainly composed of potash feldspar, quartz, plagioclase and biotite. This suite has long been regarded as a Palaeozoic magmatic pluton, but zircon U–Pb ages of 809 ± 9 Ma and 816 ± 4 Ma are obtained in this study. The granites are metaluminous to strongly peraluminous with high alkali contents, and exhibit highly fractionated features, including high SiO2, low Zr/Hf ratios, rare earth element tetrad effects and enrichment of K and Rb. They show Hf–Nd isotopic decoupling, which may be genetically related to their petrogenetic process. Based on the geochemical features and the positive εHf(t) values of the zircons, it is indicated that the granites may have been derived from partial melting of juvenile tonalitic rocks by biotite breakdown under fluid-absent conditions. The Chengwan granite geochemically belongs to the A2-subtype granites, suggesting that it might have formed in a post-orogenic tectonic setting. The highly fractionated A-type granite in this study may represent extensional collapse shortly after the collisional events in the South Qinling block, and thus indicate a tectonic regime switch, from compression to extension, as early as middle Neoproterozoic time. Integrating our new data with documented magmatic, metamorphic and sedimentary events during middle Neoproterozoic time in the region may support a continental rift model, and argues against arc models.


Geomorphology ◽  
2021 ◽  
Vol 374 ◽  
pp. 107487
Author(s):  
Ruxin Ding ◽  
Yuan Chang ◽  
Kyoungwon Min ◽  
Changhai Xu ◽  
Wei Wang

2013 ◽  
Vol 151 (5) ◽  
pp. 916-937 ◽  
Author(s):  
XIN DENG ◽  
KUNGUANG YANG ◽  
ALI POLAT ◽  
TIMOTHY M. KUSKY ◽  
KAIBIN WU

AbstractCretaceous granites are widespread in the North Dabie orogen, Central China, but their emplacement sequence and mechanism are poorly known. The Tiantangzhai Complex in the North Dabie Complex is the largest Cretaceous granitic suite consisting of six individual intrusions. In this study, zircon U–Pb ages are used to constrain the crystallization and protolith ages of these intrusions. The Shigujian granite is a syn-tectonic intrusion with an age of 141 Ma. This granite was emplaced under a compressional regime. Oscillatory rims of zircons have yielded two peaks at 137±1 Ma and 125±1 Ma. The 137±1 Ma peak represents the beginning of orogenic extension and tectonic collapse, whereas the 125±1 Ma peak represents widespread granitic magmatism. Zircon cores have yielded concordant ages between 812 and 804 Ma, which indicate a crystallization age for the protolith. The Tiantangzhai granites show relatively high Sr contents and high La/Yb and Sr/Y ratios. The Shigujian granite has positive Eu anomalies resulting from partial melting of a plagioclase-rich source in an over-thickened crust. Correspondingly, in situ Lu–Hf analyses from zircons yield high negative εHf(t) values from −24.8 to −26.6, with two-stage Hf model ages from 2748±34 to 2864±40 Ma, suggesting that the magmas were dominantly derived from partial melting of middle to lower crustal rocks. The Dabie orogen underwent pervasive NW–SE extension at the beginning of the early Cretaceous associated with subduction of the Palaeo-Pacific plate beneath eastern China.


2017 ◽  
Vol 60 (11-14) ◽  
pp. 1453-1478 ◽  
Author(s):  
Xiaoqiang Liu ◽  
Jun Yan ◽  
Aiguo Wang ◽  
Quanzhong Li ◽  
Jiancheng Xie

2019 ◽  
Vol 30 (6) ◽  
pp. 1230-1242 ◽  
Author(s):  
Zhaojun Song ◽  
Huimin Liu ◽  
Fanxue Meng ◽  
Xingyu Yuan ◽  
Qiao Feng ◽  
...  

2012 ◽  
Vol 37 ◽  
pp. 134-149 ◽  
Author(s):  
Shutong Xu ◽  
Weiping Wu ◽  
Yiqun Lu ◽  
Dehua Wang

Sign in / Sign up

Export Citation Format

Share Document