Petrogenesis and tectonic significance of the middle Neoproterozoic highly fractionated A-type granite in the South Qinling block

2021 ◽  
pp. 1-20
Author(s):  
Xiao-Fei Qiu ◽  
Qiong Xu ◽  
Tuo Jiang ◽  
Shan-Song Lu ◽  
Long Zhao

Abstract The South Qinling block, a segment of the Yangtze craton involved in the Qinling–Dabie orogen, is critical for understanding the tectonic evolution of eastern China. However, the tectonic setting of the South Qinling block and the northern margin of the Yangtze block during middle Neoproterozoic time has long been the subject of debate, with two distinctly different models (continental rift or volcanic arc) proposed. Here, a comprehensive study of zircon U–Pb geochronology and geochemistry has been carried out on the Chengwan granitic pluton from the Suizao terrane in the South Qinling block. The granites are monzogranite and syenogranite in lithology, and are mainly composed of potash feldspar, quartz, plagioclase and biotite. This suite has long been regarded as a Palaeozoic magmatic pluton, but zircon U–Pb ages of 809 ± 9 Ma and 816 ± 4 Ma are obtained in this study. The granites are metaluminous to strongly peraluminous with high alkali contents, and exhibit highly fractionated features, including high SiO2, low Zr/Hf ratios, rare earth element tetrad effects and enrichment of K and Rb. They show Hf–Nd isotopic decoupling, which may be genetically related to their petrogenetic process. Based on the geochemical features and the positive εHf(t) values of the zircons, it is indicated that the granites may have been derived from partial melting of juvenile tonalitic rocks by biotite breakdown under fluid-absent conditions. The Chengwan granite geochemically belongs to the A2-subtype granites, suggesting that it might have formed in a post-orogenic tectonic setting. The highly fractionated A-type granite in this study may represent extensional collapse shortly after the collisional events in the South Qinling block, and thus indicate a tectonic regime switch, from compression to extension, as early as middle Neoproterozoic time. Integrating our new data with documented magmatic, metamorphic and sedimentary events during middle Neoproterozoic time in the region may support a continental rift model, and argues against arc models.

2017 ◽  
Vol 60 (11-14) ◽  
pp. 1453-1478 ◽  
Author(s):  
Xiaoqiang Liu ◽  
Jun Yan ◽  
Aiguo Wang ◽  
Quanzhong Li ◽  
Jiancheng Xie

2012 ◽  
Vol 37 ◽  
pp. 134-149 ◽  
Author(s):  
Shutong Xu ◽  
Weiping Wu ◽  
Yiqun Lu ◽  
Dehua Wang

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 99
Author(s):  
Longxue Li ◽  
Qingye Hou ◽  
Dingling Huang ◽  
Xinyu Wang

The late Palaeozoic was an important period of tectonic evolution for the northern margin of the North China Craton (NCC). The source(s) and tectonic setting of early Permian granitoid rocks emplaced along the northern margin of the NCC are still unclear. These granitoids formed between ~295.4–276.1 Ma (uncertainties ranging from ±1.5 to ±7.8 Ma) according to zircon laser ablation inductively coupled mass spectrometry (LA-ICP-MS) and sensitive high-resolution ion microprobe (SHRIMP) U-Pb data. The Dadongou (DDG) pluton is an A1-type granite and the Dananfangzi (DNFZ) pluton is an A2-type granite. The Erdaowa (EDW), Lisicun (LSC), Wuhai (WH) and Gehuasitai (GHST) plutons are I-type granites. The Yuanbaoshan (YBS) dykes are diorite and syenodiorite. All the granitoids are enriched in large ion lithophile elements and light rare earth elements, depleted in high field strength elements and have negative εNd(t) and εHf(t) values. The A1-type granite was formed by the melting of the mafic crust. The A2-type granite was derived from partial melting of tonalite gneiss from the NCC crust and mantle materials. The EDW, LSC, WH and GHST granites mainly originated from partially melted granulite, with some mantle input. The YBS dykes are formed by the magma mixing of hot mantle melt and the relatively cold crustal magma. The northern margin of the NCC experienced anorogenic and collision tectonic stages, and the structural setting started to transform to post-collision at the later period of early Permian.


2020 ◽  
Author(s):  
Wei Tao ◽  
Yang Li ◽  
Yingtao Chen ◽  
Rukui Lu ◽  
Yazhou Ran ◽  
...  

2013 ◽  
Vol 151 (5) ◽  
pp. 765-776 ◽  
Author(s):  
GI YOUNG JEONG ◽  
CHANG-SIK CHEONG ◽  
KEEWOOK YI ◽  
JEONGMIN KIM ◽  
NAMHOON KIM ◽  
...  

AbstractThe Phanerozoic subduction system of the Korean peninsula is considered to have been activated by at least Middle Permian time. The geochemically arc-like Andong ultramafic complex (AUC) occurring along the border between the Precambrian Yeongnam massif and the Cretaceous Gyeongsang back-arc basin provides a rare opportunity for direct study of the pre-Cretaceous mantle wedge lying above the subduction zone. The tightly constrained SHRIMP U–Pb age of zircons extracted from orthopyroxenite specimens (222.1±1.0 Ma) is indistinguishable from the Ar/Ar age of coexisting phlogopite (220±6 Ma). These ages represent the timing of suprasubduction zone magmatism likely in response to the sinking of cold and dense oceanic lithosphere and the resultant extensional strain regime in a nascent arc environment. The nearly coeval occurrence of a syenite-gabbro-monzonite suite in the SW Yeongnam massif also suggests an extensional tectonic setting along the continental margin side during Late Triassic time. The relatively enriched ɛHf range of dated zircons (+6.2 to −0.6 at 222 Ma) is in contrast to previously reported primitive Sr–Nd–Hf isotopic features of Cenozoic mantle xenoliths from Korea and eastern China. This enrichment is not ascribed to contamination by the hypothetical Palaeozoic crust beneath SE Korea, but is instead attributable to metasomatism of the lithospheric mantle during the earlier subduction of the palaeo-Pacific plate. Most AUC zircons show a restricted core-to-rim spread of ɛHf values, but some grains testify to the operation of open-system processes during magmatic differentiation.


2011 ◽  
Vol 54 (7) ◽  
pp. 975-981 ◽  
Author(s):  
Tao Wang ◽  
ZongQi Wang ◽  
Zhen Yan ◽  
QuanRen Yan ◽  
YingLi Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document