Temperature-induced release of all-trans-retinoic acid loaded in solid lipid nanoparticles for topical delivery

2008 ◽  
Vol 16 (8) ◽  
pp. 682-685 ◽  
Author(s):  
Chang-Moon Lee ◽  
Hwan-Jeong Jeong ◽  
Ji-Won Park ◽  
Jin Kim ◽  
Ki-Young Lee
2020 ◽  
Vol 8 (6) ◽  
pp. 495-510
Author(s):  
Manoj Kumar ◽  
Garima Sharma ◽  
Dinesh Singla ◽  
Sukhjeet Singh ◽  
Vandita Kakkar ◽  
...  

Background:: All-trans retinoic acid (ATRA) is widely employed in the treatment of various proliferative and inflammatory diseases. However, its therapeutic efficacy is imperiled due to its poor solubility and stability. Latter was surmounted by its incorporation into a solid matrix of lipidic nanoparticles (SLNs). Methods:: ATRA loaded SLNs (ATRA-SLNs) were prepared using a novel microemulsification technique (USPTO 9907758) and an optimal composition and were characterized in terms of morphology, differential scanning calorimetry (DSC), and powder X-ray diffraction studies (PXRD). In vitro release, oral plasma pharmacokinetics (in rats) and stability studies were also done. Results:: Rod-shaped ATRA-SLNs could successfully incorporate 3.7 mg/mL of ATRA, increasing its solubility (from 4.7 μg/mL) by 787 times, having an average particle size of 131.30 ± 5.0 nm and polydispersibility of 0.283. PXRD, DSC, and FTIR studies confirmed the formation of SLNs. Assay/total drug content and entrapment efficiency of ATRA-SLNs was 92.50 ± 2.10% and 84.60 ± 3.20% (n=6), respectively, which was maintained even on storage for one year under refrigerated conditions as an aqueous dispersion. In vitro release in 0.01 M phosphate buffer (pH 7.4) with 3% tween 80 was extended 12 times from 2h for free ATRA to 24 h for ATRA-SLNs depicting Korsmeyer Peppas release. Oral administration in rats showed 35.03 times enhanced bioavailability for ATRA-SLNs. Conclusion:: Present work reports preparation and evaluation of bioenhanced ATRA-SLNs containing a high concentration of ATRA (>15 times than that reported by others). Latter is attributed to the novel preparation process and intelligent selection of components. Lay Summary: All-trans retinoic acid (ATRA) shows an array of pharmacological activities but its efficacy is limited due to poor solubility, stability and side effects. In present study its solubility and efficacy is improved by 787 and 35.5 times, respectively upon incorporation into solid lipid nanoparticles (ATRA-SLNs). Latter extended its release by 12 times and provided stability for at least a year under refrigeration. A controlled and sustained release will reduce dose related side effects. ATRA-SLNs reported presently can thus be used in treatment /prophylaxis of disorders like cancers, tuberculosis, age related macular degeneration and acne and as an immune-booster.


2016 ◽  
Vol 16 (2) ◽  
pp. 1291-1300 ◽  
Author(s):  
Elton Luiz Silva ◽  
Flávia Alves Lima ◽  
Guilherme Carneiro ◽  
Jonas Pereira Ramos ◽  
Dawidson Assis Gomes ◽  
...  

2015 ◽  
Vol 182 ◽  
pp. 929-934 ◽  
Author(s):  
Flávia Lidiane Oliveira da Silva ◽  
Letícia Márcia da Silva Tinoco ◽  
Lucas Antônio Miranda Ferreira ◽  
Andréa Renata Malagutti ◽  
Guilherme Carneiro

2013 ◽  
Vol 10 (6) ◽  
pp. 656-666 ◽  
Author(s):  
Sandipan Dasgupta ◽  
Surajit Ghosh ◽  
Subhabrata Ray ◽  
Bhaskar Mazumder

2021 ◽  
pp. 1-12
Author(s):  
Irshadullah ◽  
Shefaat Ullah Shah ◽  
Muhammad Khalid Khan ◽  
Kifayat Ullah Shah ◽  
Barkat Ali Khan

Chitosan a poly-(D) glucosamine is a polysaccharide made by treating shrimp and other crustacean shells with the alkali sodium hydroxide. It is a hydrophilic polymer that helps to retain the drug inside the solid lipid nanoparticles (SLN’s) and prolongs the release of drug from the carrier system. The purpose of the study was to formulate Chitosan decorated SLN’s for the topical delivery of dexibuprofen by hot pressure homogenization technique. Blank SLN’s, drug loaded SLN’s and Chitosan decorated SLN’s were prepared. Particle size, zeta potential and PDI were determined. FTIR study was conducted to evaluate the compatibility of excipients with the active drug. Surface morphology of SLN’s was determined by field emission scanning electron microscope. Drug content and entrapment efficiency of SLN’s were determined using indirect method. In vitro release and ex vivo permeation study of SLN’s were carried out using Franz diffusion cell. The droplet size fell into the nano range i.e. 132±7 to 424±2 nm which is effective for topical drug delivery system. The PDI of formulations range from 0.21 to 0.42 which depicts the homogeneity of all the SLN’s formulations. Vibrational analysis indicates that there is no interaction between active drug and excipient used in the formulation. The surface morphology revealed the spherical shape of Chitosan decorated SLN’s. The in vitro release of formulations showed 79.91±1.07 to 89.94±1.8 % drug release. The drug permeation study showed high permeation of drug into the skin. The percent drug permeation ranges from 64.15±0.93 to 71.80±0.88% indicating good permeation of drug across the skin. Overall, SLN’s are an effective carrier for topical delivery of dexibuprofen and thus bypasses side effects associated with oral delivery.


Sign in / Sign up

Export Citation Format

Share Document