scholarly journals Ability of indigenous Bacillus licheniformis and Bacillus subtilis in microbial enhanced oil recovery

2008 ◽  
Vol 5 (3) ◽  
pp. 385-390 ◽  
Author(s):  
S. Haghighat ◽  
A. Akhavan Sepahy ◽  
M. Mazaheri Assadi ◽  
H. Pasdar
2019 ◽  
Vol 16 (7) ◽  
pp. 530-539 ◽  
Author(s):  
Haiyan Xu ◽  
Huanjiang Wang ◽  
Weihong Jia ◽  
Sili Ren ◽  
Jinqing Wang

Fuel ◽  
2013 ◽  
Vol 111 ◽  
pp. 259-268 ◽  
Author(s):  
Jorge F.B. Pereira ◽  
Eduardo J. Gudiña ◽  
Rita Costa ◽  
Rui Vitorino ◽  
José A. Teixeira ◽  
...  

2019 ◽  
Vol 11 (6) ◽  
pp. 1652 ◽  
Author(s):  
Eunji Hong ◽  
Moon Jeong ◽  
Tae Kim ◽  
Ji Lee ◽  
Jin Cho ◽  
...  

By incorporating a temperature-dependent biokinetic and thermal model, the novel method, cold-water microbial enhanced oil recovery (MEOR), was developed under nonisothermal conditions. The suggested model characterized the growth for Bacillus subtilis (microbe) and Surfactin (biosurfactant) that were calibrated and confirmed against the experimental results. Several biokinetic parameters were obtained within approximately a 2% error using the cardinal temperature model and experimental results. According to the obtained parameters, the examination was conducted with several injection scenarios for a high-temperature reservoir of 71 °C. The results proposed the influences of injection factors including nutrient concentration, rate, and temperature. Higher nutrient concentrations resulted in decreased interfacial tension by producing Surfactin. On the other hand, injection rate and temperature changed growth condition for Bacillus subtilis. An optimal value of injection rate suggested that it affected not only heat transfer but also nutrient residence time. Injection temperature led to optimum reservoir condition for Surfactin production, thereby reducing interfacial tension. Through the optimization process, the determined optimal injection design improved oil recovery up to 53% which is 8% higher than waterflooding. The proposed optimal injection design was an injection sucrose concentration of 100 g/L, a rate of 7 m3/d, and a temperature of 19 °C.


2012 ◽  
Author(s):  
Eduardo J. Gudina ◽  
Ligia R. Rodrigues ◽  
J. Couto Teixeira ◽  
Jorge F. Brando Pereira ◽  
Laura Palma Soares

2021 ◽  
Vol 9 (2) ◽  
pp. 101
Author(s):  
Rizqy Fachria

Biosurfactant as secondary metabolit produced by Bacillus subtilis. It has the ability to emulsify and reduce the surface tension. Biosurfactants produced by B. subtilis is a lipopeptide. Furthermore, biosurfactant can be utilized in microbial enhanced oil recovery (MEOR). In this research, biosurfactant of B. subtilis ATCC 19 659 were evaluated. The production use Nutrient Broth (NB) and soybean liquid waste. Application of biosurfactant in oil recovery showed that biosurfactant of NB recover 2 mL crude oil and biosurfactant of soybean liquid waste medium recover 3.67 mL.


Sign in / Sign up

Export Citation Format

Share Document