scholarly journals Polymer Nanoparticles Prepared by Supercritical Carbon Dioxide for in Vivo Anti-cancer Drug Delivery

2013 ◽  
Vol 6 (1) ◽  
pp. 20-23 ◽  
Author(s):  
Maofang Hua ◽  
Xiufu Hua
2010 ◽  
Vol 18 (7) ◽  
pp. 680-685 ◽  
Author(s):  
Sung-Gwon Kang ◽  
Se Chul Lee ◽  
Seong Hoon Choi ◽  
Sangsoo Park ◽  
Seok Jeong ◽  
...  

2020 ◽  
Vol 317 ◽  
pp. 113954 ◽  
Author(s):  
Mahboubeh Pishnamazi ◽  
Samyar Zabihi ◽  
Sahar Jamshidian ◽  
Hoda Zeinolabedin Hezaveh ◽  
Ali Zeinolabedini Hezave ◽  
...  

2013 ◽  
Vol 458 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Gustavo R. Rivera-Rodriguez ◽  
Giovanna Lollo ◽  
Tristan Montier ◽  
Jean Pierre Benoit ◽  
Catherine Passirani ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahboubeh Pishnamazi ◽  
Samyar Zabihi ◽  
Sahar Jamshidian ◽  
Fatemeh Borousan ◽  
Ali Zeinolabedini Hezave ◽  
...  

AbstractDesign and development of efficient processes for continuous manufacturing of solid dosage oral formulations is of crucial importance for pharmaceutical industry in order to implement the Quality-by-Design paradigm. Supercritical solvent-based manufacturing can be utilized in pharmaceutical processing owing to its inherent operational advantages. However, in order to evaluate the possibility of supercritical processing for a particular medicine, solubility measurement needs to be carried out prior to process design. The current work reports a systematic solubility analysis on decitabine as an anti-cancer medicine. The solvent is supercritical carbon dioxide at different conditions (temperatures and pressures), while gravimetric technique is used to obtain the solubility data for decitabine. The results indicated that the solubility of decitabine varies between 2.84 × 10–05 and 1.07 × 10–03 mol fraction depending on the temperature and pressure. In the experiments, temperature and pressure varied between 308–338 K and 12–40 MPa, respectively. The solubility of decitabine was plotted against temperature and pressure, and it turned out that the solubility had direct relation with the pressure due to the effect of pressure on solvating power of solvent. The effect of temperature on solubility was shown to be dependent on the cross-over pressure. Below the cross-over pressure, there is a reverse relation between temperature and solubility, while a direct relation was observed above the cross-over pressure (16 MPa). Theoretical study was carried out to correlate the solubility data using several thermodynamic-based models. The fitting and model calibration indicated that the examined models were of linear nature and capable to predict the measured decitabine solubilities with the highest average absolute relative deviation percent (AARD %) of 8.9%.


2018 ◽  
Vol 54 (66) ◽  
pp. 9190-9193 ◽  
Author(s):  
Lei Liu ◽  
Chao Kong ◽  
Meng Huo ◽  
Chengyu Liu ◽  
Liao Peng ◽  
...  

A drug delivery system mediated by Schiff base interaction incorporated mesoporous organosilica nanoparticles exhibits tumor/pH-responsive degradability and enhanced anti-cancer efficacy.


Sign in / Sign up

Export Citation Format

Share Document