On loop detection in connection calculi

Author(s):  
Stefan Brüning
Keyword(s):  
2021 ◽  
pp. 115646
Author(s):  
Jianfang Chang ◽  
Na Dong ◽  
Donghui Li ◽  
Minghui Qin

2013 ◽  
Vol 3 (4) ◽  
Author(s):  
Jan-Mou Li ◽  
Lee Han ◽  
Chung-Hao Chen

AbstractInductance loop detection systems serve as a primary data source to contemporary traffic information systems. Measures like 20-second or 30-second average velocity, flow, and lane occupancy can be aggregated from individual loop detector actuation sampled at 60 Hz typically. Practically, these measures would sometimes be further aggregated into a much lower, e.g. 15-minute, resolution and then the raw data were lost. Valuable traffic information like flow variation may be distorted when the lower resolution aggregation is practiced. A biased conclusion could be drawn from a data integration system consisted of this kind of distortions. Three approaches estimating a peak hour factor based on traffic volume from loop detection systems are introduced in this paper to explore such a quality issue for data integration systems. Peak hour factor is commonly used in Highway Capacity Manual for determining and evaluating future system needs. By processing the raw data with the introduced approaches, different PHFs can be determined from a same traffic dataset. It is found that 2% to 5% (about one standard deviation from the mean) reduction in PHF may have 5 to 20 seconds increase in control delay estimation. The results suggest that distortion of control delay estimation at a signalized intersection exists due to an improper aggregation. That is, data quality might not be good enough for a right decision if the data were not processed appropriately.


Author(s):  
Shanaya Shital Shah ◽  
Stella Hartono ◽  
Frédéric Chédin ◽  
Wolf-Dietrich Heyer

ABSTRACTDisplacement loops (D-loops) are signature intermediates formed during homologous recombination. Numerous factors regulate D-loop formation and disruption, thereby influencing crucial aspects of DNA repair, including donor choice and the possibility of a crossover outcome. While D-loop detection methods exist, it is currently unfeasible to assess the relationship between D-loop editors and D-loop characteristics such as length and position. Here, we developed a novel in vitro assay to characterize the length and position of individual D-loop with base-pair resolution and deep coverage, while also revealing their distribution in a population. Non-denaturing bisulfite treatment modifies the cytosines on the displaced strand of the D-loop to uracil, leaving a permanent signature for the displaced strand. Subsequent single-molecule real-time sequencing uncovers the cytosine conversion patch as a D-loop footprint, revealing D-loop characteristics at unprecedented resolution. The D-loop Mapping Assay is widely applicable with different substrates and donor types and can be used to study factors that influence D-loop properties.


Author(s):  
Maxime Duquesnoy ◽  
Raphaël Lévy ◽  
Jean-Michel Melkonian ◽  
Guillaume Aoust ◽  
Myriam Raybaut ◽  
...  

2021 ◽  
Author(s):  
Phillip Wulfridge ◽  
Kavitha Sarma

AbstractR-loops are three stranded nucleic acid structures with essential roles in many nuclear processes. However, their unchecked accumulation as seen in some neurodevelopmental diseases and cancers and is associated with compromised genome stability. Genome-wide profiling of R-loops in normal cells and their comparison in disease states can help identify precise locations of pathogenic R-loops and advance efforts to attenuate deviant R-loops while preserving biologically important ones. Toward this, we have developed an antibody-independent R-loop detection strategy, BisMapR, that combines nuclease-based R-loop isolation with non-denaturing bisulfite chemistry to produce high-resolution, genome-wide R-loop profiles that retain strand information. Furthermore, BisMapR achieves greater resolution and is faster than existing strand-specific R-loop profiling strategies. We applied BisMapR to reveal discrete R-loop behavior at gene promoters and enhancers. We show that gene promoters exhibiting antisense transcription form R-loops in both directions. and uncover a subset of active enhancers that, despite being bidirectionally transcribed, form R-loops exclusively on one strand. Thus, BisMapR reveals a previously unnoticed feature of active enhancers and provides a tool to systematically examine their mechanisms in gene expression.


2015 ◽  
Vol 23 (9) ◽  
pp. 2540-2545
Author(s):  
吴志强 Wu Zhi-qiang ◽  
杨亮 YANG Liang ◽  
夏国明 XIA Guo-ming ◽  
苏岩 Su Yan

Sign in / Sign up

Export Citation Format

Share Document