A prediction problem for gaussian planar processes which are markovian with respect to increasing and decreasing paths

Author(s):  
Russo Francesco
Keyword(s):  
Author(s):  
Muhammad Faheem Mushtaq ◽  
Urooj Akram ◽  
Muhammad Aamir ◽  
Haseeb Ali ◽  
Muhammad Zulqarnain

It is important to predict a time series because many problems that are related to prediction such as health prediction problem, climate change prediction problem and weather prediction problem include a time component. To solve the time series prediction problem various techniques have been developed over many years to enhance the accuracy of forecasting. This paper presents a review of the prediction of physical time series applications using the neural network models. Neural Networks (NN) have appeared as an effective tool for forecasting of time series.  Moreover, to resolve the problems related to time series data, there is a need of network with single layer trainable weights that is Higher Order Neural Network (HONN) which can perform nonlinearity mapping of input-output. So, the developers are focusing on HONN that has been recently considered to develop the input representation spaces broadly. The HONN model has the ability of functional mapping which determined through some time series problems and it shows the more benefits as compared to conventional Artificial Neural Networks (ANN). The goal of this research is to present the reader awareness about HONN for physical time series prediction, to highlight some benefits and challenges using HONN.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 664
Author(s):  
Nikos Kanakaris ◽  
Nikolaos Giarelis ◽  
Ilias Siachos ◽  
Nikos Karacapilidis

We consider the prediction of future research collaborations as a link prediction problem applied on a scientific knowledge graph. To the best of our knowledge, this is the first work on the prediction of future research collaborations that combines structural and textual information of a scientific knowledge graph through a purposeful integration of graph algorithms and natural language processing techniques. Our work: (i) investigates whether the integration of unstructured textual data into a single knowledge graph affects the performance of a link prediction model, (ii) studies the effect of previously proposed graph kernels based approaches on the performance of an ML model, as far as the link prediction problem is concerned, and (iii) proposes a three-phase pipeline that enables the exploitation of structural and textual information, as well as of pre-trained word embeddings. We benchmark the proposed approach against classical link prediction algorithms using accuracy, recall, and precision as our performance metrics. Finally, we empirically test our approach through various feature combinations with respect to the link prediction problem. Our experimentations with the new COVID-19 Open Research Dataset demonstrate a significant improvement of the abovementioned performance metrics in the prediction of future research collaborations.


2021 ◽  
Vol 229 ◽  
pp. 362-371
Author(s):  
Leda Maria Saragiotto Colpini ◽  
Rodrigo Clemente Thom de Souza ◽  
Giane Gonçalves Lenzi ◽  
Raphael Menechini Neto ◽  
Onélia Aparecida Andreo dos Santos ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Zachary Stanfield ◽  
Mustafa Coşkun ◽  
Mehmet Koyutürk

2005 ◽  
Vol 2 (1) ◽  
pp. 38-47
Author(s):  
Said S. Adi ◽  
Carlos E. Ferreira

Summary Given the increasing number of available genomic sequences, one now faces the task of identifying their functional parts, like the protein coding regions. The gene prediction problem can be addressed in several ways. One of the most promising methods makes use of similarity information between the genomic DNA and previously annotated sequences (proteins, cDNAs and ESTs). Recently, given the huge amount of newly sequenced genomes, new similarity-based methods are being successfully applied in the task of gene prediction. The so-called comparative-based methods lie in the similarities shared by regions of two evolutionary related genomic sequences. Despite the number of different gene prediction approaches in the literature, this problem remains challenging. In this paper we present a new comparative-based approach to the gene prediction problem. It is based on a syntenic alignment of three or more genomic sequences. With syntenic alignment we mean an alignment that is constructed taking into account the fact that the involved sequences include conserved regions intervened by unconserved ones. We have implemented the proposed algorithm in a computer program and confirm the validity of the approach on a benchmark including triples of human, mouse and rat genomic sequences.


Sign in / Sign up

Export Citation Format

Share Document