Topological properties of observability for a system of parabolic type

Author(s):  
S. Miyamoto
Author(s):  
Norman Davidson

The basic protein film technique for mounting nucleic acids for electron microscopy has proven to be a general and powerful tool for the working molecular biologist in characterizing different nucleic acids. It i s possible to measure molecular lengths of duplex and single-stranded DNAs and RNAs. In particular, it is thus possible to as certain whether or not the nucleic acids extracted from a particular source are or are not homogeneous in length. The topological properties of the polynucleotide chain (linear or circular, relaxed or supercoiled circles, interlocked circles, etc. ) can also be as certained.


2013 ◽  
Vol 45 (12) ◽  
pp. 1324-1333
Author(s):  
Baolin LI ◽  
Youguo CHEN ◽  
Xiangyong YUAN ◽  
Jackson Todd ◽  
Xiting HUANG

2020 ◽  
Vol 16 (2) ◽  
pp. 190-195 ◽  
Author(s):  
Süleyman Ediz ◽  
Murat Cancan

Background: Reckoning molecular topological indices of drug structures gives the data about the underlying topology of these drug structures. Novel anticancer drugs have been leading by researchers to produce ideal drugs. Materials and Methods: Pharmacological properties of these new drug agents explored by utilizing simulation strategies. Topological indices additionally have been utilized to research pharmacological properties of some drug structures. Novel alkylating agents based anticancer drug candidates and ve-degree molecular topological indices have been introduced recently. Results and Conclusion: In this study we calculate ve-degree atom-bond connectivity, harmonic, geometric-arithmetic and sum-connectivity molecular topological indices for the newly defined alkylating agents based dual-target anticancer drug candidates.


1994 ◽  
Vol 20 (2) ◽  
pp. 819
Author(s):  
Muthuvel

1988 ◽  
Vol 53 (6) ◽  
pp. 1181-1197
Author(s):  
Vladimír Kudrna

The paper presents alternative forms of partial differential equations of the parabolic type used in chemical engineering for description of heat and mass transfer. It points at the substantial difference between the classic form of the equations, following from the differential balances of mass and enthalpy, and the form following from the concept of stochastic motion of particles of mass or energy component. Examples are presented of the processes that may be described by the latter method. The paper also reviews the cases when the two approaches become identical.


2013 ◽  
Vol 41 (2) ◽  
pp. 548-553 ◽  
Author(s):  
Andrew A. Travers ◽  
Georgi Muskhelishvili

How much information is encoded in the DNA sequence of an organism? We argue that the informational, mechanical and topological properties of DNA are interdependent and act together to specify the primary characteristics of genetic organization and chromatin structures. Superhelicity generated in vivo, in part by the action of DNA translocases, can be transmitted to topologically sensitive regions encoded by less stable DNA sequences.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 143
Author(s):  
Sergey Nikolaev ◽  
Dmitry Pshenay-Severin ◽  
Yuri Ivanov ◽  
Alexander Burkov

Recently, it was shown that materials with certain crystal structures can exhibit multifold band crossings with large topological charges. CoSi is one such material that belongs to non-centrosymmetric space group P213 (#198) and posseses multifold band crossing points with a topological charge of 4. The change of crystal symmetry, e.g., by means of external stress, can lift the degeneracy and change its topological properties. In the present work, the influence of uniaxial deformation on the band structure and topological properties of CoSi is investigated on the base of ab initio calculations. The k·p Hamiltonian taking into account deformation is constructed on the base of symmetry consideration near the Γ and R points both with and without spin-orbit coupling. The transformation of multifold band crossings into nodes of other types with different topological charges, their shift both in energy and in reciprocal space and the tilt of dispersion around nodes are studied in detail depending on the direction of uniaxial deformation.


Author(s):  
Vakeel A. Khan ◽  
Umme Tuba ◽  
SK. Ashadul Rahama ◽  
Ayaz Ahmad

In 1990, Diamond [16] primarily established the base of fuzzy star–shaped sets, an extension of fuzzy sets and numerous of its properties. In this paper, we aim to generalize the convergence induced by an ideal defined on natural numbers ℕ , introduce new sequence spaces of fuzzy star–shaped numbers in ℝ n and examine various algebraic and topological properties of the new corresponding spaces as well. In support of our results, we provide several examples of these new resulting sequences.


Sign in / Sign up

Export Citation Format

Share Document