System description: Leo — A higher-order theorem prover

Author(s):  
Christoph Benzmüller ◽  
Michael Kohlhase
10.29007/grmx ◽  
2018 ◽  
Author(s):  
Christoph Benzmüller ◽  
Alexander Steen ◽  
Max Wisniewski

Leo-III is an automated theorem prover for (polymorphic) higher-order logic which supports all common TPTP dialects, including THF, TFF and FOF as well as their rank-1 polymorphic derivatives. It is based on a paramodulation calculus with ordering constraints and, in tradition of its predecessor LEO-II, heavily relies on cooperation with external first-order theorem provers.Unlike LEO-II, asynchronous cooperation with typed first-order provers and an agent-based internal cooperation scheme is supported. In this paper, we sketch Leo-III's underlying calculus, survey implementation details and give examples of use.


10.29007/prxp ◽  
2018 ◽  
Author(s):  
Jan Olaf Blech ◽  
Thanh-Hung Nguyen ◽  
Michael Perin

In this paper we present on-going work addressing the problem of automatically generating realistic and guaranteed correct invariants. Since invariant generation mechanisms are error-prone, after the computation of invariants by a verification tool, we formally prove that the generated invariants are indeed invariants of the considered systems using a higher-order theorem prover and automated techniques. We regard invariants for BIP models. BIP (behavior, interaction, priority) is a language for specifying asynchronous component based systems. Proving that an invariant holds often requires an induction on possible system execution traces. For this reason, apart from generating invariants that precisely capture a system’s behavior, inductiveness of invariants is an important goal. We establish a notion of robust BIP models. These can be automatically constructed from our original non-robust BIP models and over-approximate their behavior. We motivate that invariants of robust BIP models capture the behavior of systems in a more natural way than invariants of corresponding non-robust BIP models. Robust BIP models take imprecision due to values delivered by sensors into account. Invariants of robust BIP models tend to be inductive and are also invariants of the original non-robust BIP model. Therefore they may be used by our verification tools and it is easy to show their correctness in a higher-order theorem prover. The presented work is developed to verify the results of a deadlock-checking tool for embedded systems after their computations. Therewith, we gain confidence in the provided analysis results.


Author(s):  
Leonardo de Moura ◽  
Soonho Kong ◽  
Jeremy Avigad ◽  
Floris van Doorn ◽  
Jakob von Raumer

2019 ◽  
Vol 61 (4) ◽  
pp. 187-191
Author(s):  
Alexander Steen

Abstract Automated theorem proving systems validate or refute whether a conjecture is a logical consequence of a given set of assumptions. Higher-order provers have been successfully applied in academic and industrial applications, such as planning, software and hardware verification, or knowledge-based systems. Recent studies moreover suggest that automation of higher-order logic, in particular, yields effective means for reasoning within expressive non-classical logics, enabling a whole new range of applications, including computer-assisted formal analysis of arguments in metaphysics. My work focuses on the theoretical foundations, effective implementation and practical application of higher-order theorem proving systems. This article briefly introduces higher-order reasoning in general and presents an overview of the design and implementation of the higher-order theorem prover Leo-III. In the second part, some example applications of Leo-III are discussed.


1985 ◽  
Vol 10 (4) ◽  
pp. 72-74
Author(s):  
Bob Boyer ◽  
Matt Kaufmann

10.29007/x9c9 ◽  
2018 ◽  
Author(s):  
Nik Sultana ◽  
Christoph Benzmüller

The LEO and LEO-II provers have pioneered the integration of higher-order and first-order automated theorem proving. To date, the LEO-II system is, to our knowledge, the only automated higher-order theorem prover which is capable of generating joint higher-order–first-order proof objects in TPTP format. This paper discusses LEO-II’s proof objects. The target audience are practitioners with an interest in using LEO-II proofs within other systems.


Author(s):  
Petar Vukmirović ◽  
Alexander Bentkamp ◽  
Jasmin Blanchette ◽  
Simon Cruanes ◽  
Visa Nummelin ◽  
...  

AbstractSuperposition is among the most successful calculi for first-order logic. Its extension to higher-order logic introduces new challenges such as infinitely branching inference rules, new possibilities such as reasoning about formulas, and the need to curb the explosion of specific higher-order rules. We describe techniques that address these issues and extensively evaluate their implementation in the Zipperposition theorem prover. Largely thanks to their use, Zipperposition won the higher-order division of the CASC-J10 competition.


Sign in / Sign up

Export Citation Format

Share Document