Different approach for the relation between the kinetic and the macroscopic equations

Author(s):  
Claude Bardos
Author(s):  
Mariia Fomicheva ◽  
Elena N. Vilchevskaya ◽  
Nikolay Bessonov ◽  
Wolfgang H. Müller

AbstractIn this paper, the solution to a coupled flow problem for a micropolar medium undergoing structural changes is presented. The structural changes occur because of a grinding of the medium in a funnel-shaped crusher. The standard macroscopic equations for mass and linear momentum are solved in combination with a balance equation for the microinertia tensor containing a production term. The constitutive equations of the medium describe a linear viscous material with a viscosity coefficient depending on the characteristic particle moment of inertia, the so-called microinertia. A coupled system of equations is presented and solved numerically in order to determine the distribution of the fields for velocity, pressure, viscosity coefficient, and microinertia in all points of the continuum. The numerical solution to this problem is found by using the implicit finite difference method and the upwind scheme.


2000 ◽  
Vol 271 (1-2) ◽  
pp. 87-91 ◽  
Author(s):  
Xinzhong Chen ◽  
Hongling Rao ◽  
Edward A. Spiegel

2008 ◽  
Author(s):  
Marcelo J. S. de Lemos

This work shows numerical results for a jet impinging onto a flat plane covered with a layer of a porous material. Porosity of the porous layer is varied in order to analyze its effect on the local distribution of Nu. Macroscopic equations for mass and momentum ae obtained based on the volume-average concept. The numerical technique employed for discretizing the governing equations was the control volume method with a boundary-fitted non-orthogonal coordinate system. The SIMPLE algorithm was used to handle the pressure-velocity coupling. Results indicate that inclusion of a porous layer decreases the peak in Nu avoiding excessive heating or cooling near the stagnation region.


2012 ◽  
Vol 22 (01) ◽  
pp. 1130001 ◽  
Author(s):  
N. BELLOMO ◽  
A. BELLOUQUID ◽  
J. NIETO ◽  
J. SOLER

This paper proposes a review and critical analysis of the asymptotic limit methods focused on the derivation of macroscopic equations for a class of equations modeling complex multicellular systems by methods of the kinetic theory for active particles. Cellular interactions generate both modification of biological functions and proliferative/destructive events. The asymptotic analysis deals with suitable parabolic, hyperbolic, and mixed limits. The review includes the derivation of the classical Keller–Segel model and flux limited models that prevent non-physical blow up of solutions.


Sign in / Sign up

Export Citation Format

Share Document