scholarly journals Micropolar medium in a funnel-shaped crusher

Author(s):  
Mariia Fomicheva ◽  
Elena N. Vilchevskaya ◽  
Nikolay Bessonov ◽  
Wolfgang H. Müller

AbstractIn this paper, the solution to a coupled flow problem for a micropolar medium undergoing structural changes is presented. The structural changes occur because of a grinding of the medium in a funnel-shaped crusher. The standard macroscopic equations for mass and linear momentum are solved in combination with a balance equation for the microinertia tensor containing a production term. The constitutive equations of the medium describe a linear viscous material with a viscosity coefficient depending on the characteristic particle moment of inertia, the so-called microinertia. A coupled system of equations is presented and solved numerically in order to determine the distribution of the fields for velocity, pressure, viscosity coefficient, and microinertia in all points of the continuum. The numerical solution to this problem is found by using the implicit finite difference method and the upwind scheme.

2002 ◽  
Vol 457 ◽  
pp. 213-254 ◽  
Author(s):  
F. GOLFIER ◽  
C. ZARCONE ◽  
B. BAZIN ◽  
R. LENORMAND ◽  
D. LASSEUX ◽  
...  

Dissolution of a porous medium creates, under certain conditions, some highly conductive channels called wormholes. The mechanism of propagation is an unstable phenomenon depending on the microscopic properties at the pore scale and is controlled by the injection rate. The aim of this work is to test the ability of a Darcy-scale model to describe the different dissolution regimes and to characterize the influence of the flow parameters on the wormhole development. The numerical approach is validated by model experiments reflecting dissolution processes occurring during acid injection in limestone. Flow and transport macroscopic equations are written under the assumption of local mass non-equilibrium. The coupled system of equations is solved numerically in two dimensions using a finite volume method. Results are discussed in terms of wormhole propagation rate and pore volume injected.


2019 ◽  
Vol 17 (2) ◽  
pp. 255 ◽  
Author(s):  
Mariia Fomicheva ◽  
Wolfgang H. Müller ◽  
Elena N. Vilchevskaya ◽  
Nikolay Bessonov

In this paper foundations are laid for a future solution of a fully coupled flow problem for the micropolar medium undergoing structural change in a funnel-shaped crusher. Initially the fundamental equations of micropolar media are revisited and the problem of structural changes of micropolar media moving in a crusher is explained. Then a review of the current state-of-the-art is presented and a necessary extension of the problem is motivated. The need for using numerical methods of fluid mechanics is emphasized. As a prerequisite for the study of the fully coupled initial boundary value 2D-flow problem of a micropolar fluid the funnel flow of a Navier-Stokes fluid is investigated based on an implicit finite difference scheme using the Thomas algorithm. Numerical results for velocities, stresses, and for the pressure dependence of the funnel flow are presented. The correctness of the algorithm is checked by specializing to the case of a flow through a tunnel of constant cross-section under the influence of gravity, for which an analytical solution is available.


2020 ◽  
Vol 82 (10) ◽  
Author(s):  
P. Aceves-Sanchez ◽  
P. Degond ◽  
E. E. Keaveny ◽  
A. Manhart ◽  
S. Merino-Aceituno ◽  
...  

Abstract We model and study the patterns created through the interaction of collectively moving self-propelled particles (SPPs) and elastically tethered obstacles. Simulations of an individual-based model reveal at least three distinct large-scale patterns: travelling bands, trails and moving clusters. This motivates the derivation of a macroscopic partial differential equations model for the interactions between the self-propelled particles and the obstacles, for which we assume large tether stiffness. The result is a coupled system of nonlinear, non-local partial differential equations. Linear stability analysis shows that patterning is expected if the interactions are strong enough and allows for the predictions of pattern size from model parameters. The macroscopic equations reveal that the obstacle interactions induce short-ranged SPP aggregation, irrespective of whether obstacles and SPPs are attractive or repulsive.


2021 ◽  
Vol 13 (3) ◽  
pp. 31
Author(s):  
Wenyi Liu ◽  
Gongsheng Li ◽  
Xianzheng Jia

A fractal mobile-immobile (MIM in short) model for solute transport in heterogeneous porous media is investigated from numerics. An implicit finite difference scheme is set forth for solving the coupled system, and stability and convergence of the scheme are proved based on the estimate of the spectral radius of the coefficient matrix. Numerical simulations with different parameters are presented to reveal the solute transport behaviors in the fractal case.


2018 ◽  
Vol 848 ◽  
pp. 987-1012 ◽  
Author(s):  
S. Hier-Majumder

This article presents a framework for building analytical solutions for coupled flow in two interacting multiphase domains. The coupled system consists of a multiphase sphere embedded in a multiphase substrate. Each of these domains consists of an interconnected, load-bearing, creeping matrix phase and an inviscid, interstitial fluid phase. This article outlines techniques for building analytical solutions for velocity, pressure and compaction within each domain, subject to boundary conditions of continuity of matrix velocity, normal traction, normal pressure gradient, and compaction at the interface between the two domains. The solutions, valid over a short period of time in the limit of small fluid fraction, are strongly dependent on the ratio of shear viscosities between the matrix phase in the sphere and the matrix phase in the substrate. Compaction and pressure drop across the interface, evaluated at the poles and the equator, are strongly dependent on the ratio of matrix shear viscosities in the two domains. When deformed under a pure shear deformation, the magnitude of flow within the sphere rapidly decreases with an increase in this ratio until it reaches a value of ${\sim}80$, after which the velocity within the sphere becomes relatively insensitive to the increase in the viscosity ratio.


Author(s):  
S. Phyllis Steamer ◽  
Rosemarie L. Devine

The importance of radiation damage to the skin and its vasculature was recognized by the early radiologists. In more recent studies, vascular effects were shown to involve the endothelium as well as the surrounding connective tissue. Microvascular changes in the mouse pinna were studied in vivo and recorded photographically over a period of 12-18 months. Radiation treatment at 110 days of age was total body exposure to either 240 rad fission neutrons or 855 rad 60Co gamma rays. After in vivo observations in control and irradiated mice, animals were sacrificed for examination of changes in vascular fine structure. Vessels were selected from regions of specific interest that had been identified on photomicrographs. Prominent ultrastructural changes can be attributed to aging as well as to radiation treatment. Of principal concern were determinations of ultrastructural changes associated with venous dilatations, segmental arterial stenosis and tortuosities of both veins and arteries, effects that had been identified on the basis of light microscopic observations. Tortuosities and irregularly dilated vein segments were related to both aging and radiation changes but arterial stenosis was observed only in irradiated animals.


Author(s):  
W. Kunath ◽  
E. Zeitler ◽  
M. Kessel

The features of digital recording of a continuous series (movie) of singleelectron TV frames are reported. The technique is used to investigate structural changes in negatively stained glutamine synthetase molecules (GS) during electron irradiation and, as an ultimate goal, to look for the molecules' “undamaged” structure, say, after a 1 e/Å2 dose.The TV frame of fig. la shows an image of 5 glutamine synthetase molecules exposed to 1/150 e/Å2. Every single electron is recorded as a unit signal in a 256 ×256 field. The extremely low exposure of a single TV frame as dictated by the single-electron recording device including the electron microscope requires accumulation of 150 TV frames into one frame (fig. lb) thus achieving a reasonable compromise between the conflicting aspects of exposure time per frame of 3 sec. vs. object drift of less than 1 Å, and exposure per frame of 1 e/Å2 vs. rate of structural damage.


Author(s):  
K. Kovacs ◽  
E. Horvath ◽  
J. M. Bilbao ◽  
F. A. Laszlo ◽  
I. Domokos

Electrolytic lesions of the pituitary stalk in rats interrupt adenohypophysial blood flow and result in massive infarction of the anterior lobe. In order to obtain a deeper insight into the morphogenesis of tissue injury and to reveal the sequence of events, a fine structural investigation was undertaken on adenohypophyses of rats at various intervals following destruction of the pituitary stalk.The pituitary stalk was destroyed electrolytically, with a Horsley-Clarke apparatus on 27 male rats of the R-Amsterdam strain, weighing 180-200 g. Thirty minutes, 1,2,4,6 and 24 hours after surgery the animals were perfused with a glutaraldehyde-formalin solution. The skulls were then opened and the pituitary glands removed. The anterior lobes were fixed in glutaraldehyde-formalin solution, postfixed in osmium tetroxide and embedded in Durcupan. Ultrathin sections were stained with uranyl acetate and lead citrate and investigated with a Philips 300 electron microscope.


Author(s):  
P.L. Moore ◽  
P.L. Sannes ◽  
H.L. Bank ◽  
S.S. Spicer

It is thought that calcium and/or magnesium may play important roles in polymorphonuclear (PMN) leukocyte functions such as chemotaxis, adhesion and phagocytosis. Yet, a clear understanding of the biological roles of these ions has awaited the development of techniques which permit a selective alteration of intracellular ion concentrations. Recently, treatment of cells with the ionophore A23187 has been used to alter intracellular divalent cation concentrations. This ionophore is a lipid soluble antibiotic produced by Streptomyces chartreusensis that complexes with both calcium and magnesium (3) and is believed to carry these ions across biological membranes (4). Biochemical investigations of human PMN leukocytes demonstrate that cells treated with A23187 and extracellular calcium release their lysosomal enzymes into the extracellular medium without rupturing and releasing their soluble cytoplasmic enzymes (5,6). The aim of the present study and and a companion report (7) was to investigate the structural changes that occur in leukocytes during ionophore-induced lysosomal enzyme release.


Author(s):  
Robert M. Glaeser ◽  
Thea B. Scott

The carbon-replica technique can be used to obtain information about cell-surface structure that cannot ordinarily be obtained by thin-section techniques. Mammalian erythrocytes have been studied by the replica technique and they appear to be characterized by a pebbly or “plaqued“ surface texture. The characteristic “particle” diameter is about 200 Å to 400 Å. We have now extended our observations on cell-surface structure to chicken and frog erythrocytes, which possess a broad range of cellular functions, and to normal rat lymphocytes and mouse ascites tumor cells, which are capable of cell division. In these experiments fresh cells were washed in Eagle's Minimum Essential Medium Salt Solution (for suspension cultures) and one volume of a 10% cell suspension was added to one volume of 2% OsO4 or 5% gluteraldehyde in 0.067 M phosphate buffer, pH 7.3. Carbon replicas were obtained by a technique similar to that employed by Glaeser et al. Figure 1 shows an electron micrograph of a carbon replica made from a chicken erythrocyte, and Figure 2 shows an enlarged portion of the same cell.


Sign in / Sign up

Export Citation Format

Share Document