On a characterization of some minihypers in PG(t,q) (q=3 or 4) and its applications to error-correcting codes

Author(s):  
Noboru Hamada ◽  
Tor Helleseth
Author(s):  
Alexander Kuznetsov ◽  
Anastasia Kiyan ◽  
Andrey Pushkarev ◽  
Tatiana Kuznetsova

Cryptographic information security techniques are essential in building a modern cybersecurity infrastructure. Recently, there have been new challenges and threats to cryptographic transformation. In particular, the emergence and rapid development of the latest quantum computing technologies necessitates the urgent need for the development and research of new methods of post-quantum cryptographic transformations, that is, those that will be sustainable even if quantum cryptanalysis is possible. This article is devoted to the analysis of possibilities of implementation of digital signature schemes based on using error-correcting codes. This approach allows cryptographers to build schemes that are resistant to both classic cryptanalysis and cryptanalysis which uses quantum computing. The article describes the principles of the classic digital signature scheme which is named CFS and built using a Niederreiter-like transform, and also we propose a new approach that enables an implementation of signature according to the McEliece transformations. This approach preserves the advantages of its predecessor and provides additional protection against special attacks. Also, a comparative analysis and characterization of the considered schemes according to the criteria of resistance to classic and quantum cryptanalysis, complexity of necessary transformations and length of generated signatures are made. The results show that reliable and secure cryptographic transformations can be built, in particular, electronic digital signature algorithms that are code-based and secure even in the case of quantum cryptanalysis. However, it should be noted that the drawback of code-based signature schemes is the large amount of key data required by the algorithm, as well as the difficulty in creating a signature due to the need for multiple decryption of the syndrome, which remains a topical topic and needs further research


Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
B. H. Kear ◽  
J. M. Oblak

A nickel-base superalloy is essentially a Ni/Cr solid solution hardened by additions of Al (Ti, Nb, etc.) to precipitate a coherent, ordered phase. In most commercial alloy systems, e.g. B-1900, IN-100 and Mar-M200, the stable precipitate is Ni3 (Al,Ti) γ′, with an LI2structure. In A lloy 901 the normal precipitate is metastable Nis Ti3 γ′ ; the stable phase is a hexagonal Do2 4 structure. In Alloy 718 the strengthening precipitate is metastable γ″, which has a body-centered tetragonal D022 structure.Precipitate MorphologyIn most systems the ordered γ′ phase forms by a continuous precipitation re-action, which gives rise to a uniform intragranular dispersion of precipitate particles. For zero γ/γ′ misfit, the γ′ precipitates assume a spheroidal.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Sign in / Sign up

Export Citation Format

Share Document