scholarly journals Non-expanding horizons: multipoles and the symmetry group

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Abhay Ashtekar ◽  
Neev Khera ◽  
Maciej Kolanowski ◽  
Jerzy Lewandowski

Abstract It is well-known that blackhole and cosmological horizons in equilibrium situations are well-modeled by non expanding horizons (NEHs) [1–3]. In the first part of the paper we introduce multipole moments to characterize their geometry, removing the restriction to axisymmetric situations made in the existing literature [4]. We then show that the symmetry group $$ \mathfrak{G} $$ G of NEHs is a 1-dimensional extension of the BMS group $$ \mathfrak{B} $$ B . These symmetries are used in a companion paper [5] to define charges and fluxes on NEHs, as well as perturbed NEHs. They have physically attractive properties. Finally, it is generally not appreciated that $$ \mathcal{I} $$ I ±of asymptotically flat space-times are NEHs in the conformally completed space-time. Forthcoming papers will (i) show that $$ \mathcal{I} $$ I ± have a small additional structure that reduces $$ \mathfrak{G} $$ G to the BMS group $$ \mathfrak{B} $$ B , and the BMS charges and fluxes can be recovered from the NEH framework; and, (ii) develop gravitational wave tomography for the late stage of compact binary coalescences: reading-off the dynamics of perturbed NEHs in the strong field regime (via evolution of their multipoles), from the waveform at $$ \mathcal{I} $$ I +.

It is proved that a stationary, asymptotically flat space-time is (in a precise sense) analytic in a neighbourhood of spatial infinity. This implies that there exists a multipole expansion. Its terms are shown to be uniquely determined by the Geroch-Hansen multipole moments.


1970 ◽  
Vol 11 (6) ◽  
pp. 1955-1961 ◽  
Author(s):  
Robert Geroch
Keyword(s):  

2012 ◽  
Vol 85 (8) ◽  
Author(s):  
T. G. F. Li ◽  
W. Del Pozzo ◽  
S. Vitale ◽  
C. Van Den Broeck ◽  
M. Agathos ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yu-Bo Ma ◽  
Li-Chun Zhang ◽  
Jian Liu ◽  
Ren Zhao ◽  
Shuo Cao

In this paper, by analyzing the thermodynamic properties of charged AdS black hole and asymptotically flat space-time charged black hole in the vicinity of the critical point, we establish the correspondence between the thermodynamic parameters of asymptotically flat space-time and nonasymptotically flat space-time, based on the equality of black hole horizon area in the two different types of space-time. The relationship between the cavity radius (which is introduced in the study of asymptotically flat space-time charged black holes) and the cosmological constant (which is introduced in the study of nonasymptotically flat space-time) is determined. The establishment of the correspondence between the thermodynamics parameters in two different types of space-time is beneficial to the mutual promotion of different time-space black hole research, which is helpful to understand the thermodynamics and quantum properties of black hole in space-time.


2012 ◽  
Vol 363 ◽  
pp. 012028 ◽  
Author(s):  
T G F Li ◽  
W Del Pozzo ◽  
S Vitale ◽  
C Van Den Broeck ◽  
M Agathos ◽  
...  

2008 ◽  
Vol 86 (4) ◽  
pp. 563-570
Author(s):  
R B Mann

The implementation of holography in gravitational physics has its most concrete realization in the context of the anti-de Sitter/conformal field theory (AdS/CFT) correspondence conjecture, an implication of which is that counterterms from the boundary CFT can be understood as surface terms that render the variational principle finite and well-defined for the gravity theory in the bulk. I discuss recent developments that show how such gravitational counterterms can be deployed for asymptotically flat spacetimes in any spacetime dimension d ≥ 4. These actions yield conserved quantities at spacelike infinity that agree with the usual Arnowitt–Deser–Misner results but are more general. This approach removes the need for ill-defined background subtraction methods and suggests the possibility of obtaining a dual field theory to gravity theories in asymptotically flat spacetimes.PACS Nos.: 04.20.Ha, 04.60.–m, 11.25.Tq


2008 ◽  
Vol 17 (13n14) ◽  
pp. 2599-2606
Author(s):  
CARLOS KOZAMEH ◽  
EZRA T. NEWMAN ◽  
GILBERTO SILVA-ORTIGOZA

A problem in general relativity is how to extract physical information from solutions to the Einstein equations. Most often information is found from special conditions, e.g., special vector fields, symmetries or approximate symmetries. Our concern is with asymptotically flat space–times with approximate symmetry: the BMS group. For these spaces the Bondi four-momentum vector and its evolution, found at infinity, describes the total energy–momentum and the energy–momentum radiated. By generalizing the simple idea of the transformation of (electromagnetic) dipoles under a translation, we define (analogous to center of charge) the center of mass for asymptotically flat Einstein–Maxwell fields. This gives kinematical meaning to the Bondi four-momentum, i.e., the four-momentum and its evolution is described in terms of a center of mass position vector, its velocity and spin-vector. From dynamical arguments, a unique (for our approximation) total angular momentum and evolution equation in the form of a conservation law is found.


Sign in / Sign up

Export Citation Format

Share Document