scholarly journals The Thermodynamic Relationship between the RN-AdS Black Holes and the RN Black Hole in Canonical Ensemble

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yu-Bo Ma ◽  
Li-Chun Zhang ◽  
Jian Liu ◽  
Ren Zhao ◽  
Shuo Cao

In this paper, by analyzing the thermodynamic properties of charged AdS black hole and asymptotically flat space-time charged black hole in the vicinity of the critical point, we establish the correspondence between the thermodynamic parameters of asymptotically flat space-time and nonasymptotically flat space-time, based on the equality of black hole horizon area in the two different types of space-time. The relationship between the cavity radius (which is introduced in the study of asymptotically flat space-time charged black holes) and the cosmological constant (which is introduced in the study of nonasymptotically flat space-time) is determined. The establishment of the correspondence between the thermodynamics parameters in two different types of space-time is beneficial to the mutual promotion of different time-space black hole research, which is helpful to understand the thermodynamics and quantum properties of black hole in space-time.

2001 ◽  
Vol 16 (26) ◽  
pp. 1703-1710 ◽  
Author(s):  
DONAM YOUM

We study static brane configurations in the bulk background of the topological black holes in asymptotically flat space–time and find that such configurations are possible even for flat black hole horizon, unlike the AdS black hole case. We construct the brane world model with an orbifold structure S1/Z2 in such bulk background and study massless bulk scalar field.


2006 ◽  
Vol 15 (03) ◽  
pp. 439-457 ◽  
Author(s):  
CLAUDIO DAPPIAGGI ◽  
SIMONA RASCHI

In the framework of black hole spectroscopy, we extend the results obtained for a charged black hole in an asymptotically flat space–time to the scenario with non-vanishing negative cosmological constant. In particular, exploiting Hamiltonian techniques, we construct the area spectrum for an AdS Reissner–Nordstrøm black hole.


2010 ◽  
Vol 25 (15) ◽  
pp. 3107-3120 ◽  
Author(s):  
YONG-WAN KIM ◽  
JAEDONG CHOI ◽  
YOUNG-JAI PARK

We use the global embedding Minkowski space geometries of a (3+1)-dimensional curved Reissner–Nordström (RN)–AdS black hole space–time into a (5+2)-dimensional flat space–time to define a proper local temperature, which remains finite at the event horizon, for freely falling observers outside a static black hole. Our extended results include the known limiting cases of the RN, Schwarzschild–AdS and Schwarzschild black holes.


2018 ◽  
Vol 168 ◽  
pp. 03009
Author(s):  
Hideki Maeda

By the throat quantization pioneered by Louko and Mäkelä, we derive the mass and area/entropy spectra for the Schwarzschild-Tangherlini-type asymptotically flat or AdS vacuum black hole in arbitrary dimensions. Using the WKB approximation for black holes with large mass, we show that area/entropy is equally spaced for asymptotically flat black holes, while mass is equally spaced for asymptotically AdS black holes. Exact spectra can be obtained for toroidal AdS black holes in arbitrary dimensions including the three-dimensional BTZ black hole.


Author(s):  
Koichi Nagasaki

We find the probe D5-brane solution on the black hole space–time which is asymptomatically [Formula: see text]. These black holes have spherical, hyperbolic and toroidal structures. Depending on the gauge flux on the D5-brane, the D5-brane behaves differently. By adding the fundamental string, the potential energy of the interface solution and the Wilson loop is given in the case of nonzero gauge flux.


1989 ◽  
Vol 04 (16) ◽  
pp. 1497-1507 ◽  
Author(s):  
PAWEL O. MAZUR

The final stage of a black hole evaporation due to the Hawking effect is studied. One finds that, including the effects of quantum gravity, a black hole does not evaporate completely losing its energy steadily to a flux of created particles, but rather decays via a change in topology into an asymptotically flat space and an object which is a closed Friedmann Universe. This process is a genuine non-perturbative effect of quantum gravity and becomes the dominant “channel” of a black hole decay for black holes with masses slightly larger than the Planck mass Mp=1019 GeV. We calculate the decay rate of a Schwarzchild black hole with the mass M and discuss other decay “channels” by topology change. An explicit instanton mediating the decay is constructed by matching the Schwarzschild and the “wormhole” Friedmann instantons on the minimal sphere which is a Euclidean section of the event horizon. We show, as an example, that the decay process is mediated in the semi-classical approximation by the gravitational-axionic instanton. However, we argue that the phenomenon discussed in this paper does not depend on the particular instanton approximation and should be discussed in the framwork of the second quantization of interacting geometry suggested in Ref. 17. It is argued that in the more general setting of the Wheeler-De Witt equation, the wave functional describing a black hole is not gaussian because of the existence of an unstable mode.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Mohsen Alishahiha ◽  
Amin Faraji Astaneh ◽  
Ali Naseh

Abstract Using extended island formula we compute entanglement entropy of Hawking radiation for black hole solutions of certain gravitational models containing higher derivative terms. To be concrete we consider two different four dimensional models to compute entropy for both asymptotically flat and AdS black holes. One observes that the resultant entropy follows the Page curve, thanks to the contribution of the island, despite the fact that the corresponding gravitational models might be non-unitary.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Yoshinori Matsuo

Abstract Recently it was proposed that the entanglement entropy of the Hawking radiation contains the information of a region including the interior of the event horizon, which is called “island.” In studies of the entanglement entropy of the Hawking radiation, the total system in the black hole geometry is separated into the Hawking radiation and black hole. In this paper, we study the entanglement entropy of the black hole in the asymptotically flat Schwarzschild spacetime. Consistency with the island rule for the Hawking radiation implies that the information of the black hole is located in a different region than the island. We found an instability of the island in the calculation of the entanglement entropy of the region outside a surface near the horizon. This implies that the region contains all the information of the total system and the information of the black hole is localized on the surface. Thus the surface would be interpreted as the stretched horizon. This structure also resembles black holes in the AdS spacetime with an auxiliary flat spacetime, where the information of the black hole is localized at the interface between the AdS spacetime and the flat spacetime.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Subhroneel Chakrabarti ◽  
Suresh Govindarajan ◽  
P. Shanmugapriya ◽  
Yogesh K. Srivastava ◽  
Amitabh Virmani

Abstract Although BMPV black holes in flat space and in Taub-NUT space have identical near-horizon geometries, they have different indices from the microscopic analysis. For K3 compactification of type IIB theory, Sen et al. in a series of papers identified that the key to resolving this puzzle is the black hole hair modes: smooth, normalisable, bosonic and fermionic degrees of freedom living outside the horizon. In this paper, we extend their study to N = 4 CHL orbifold models. For these models, the puzzle is more challenging due to the presence of the twisted sectors. We identify hair modes in the untwisted as well as twisted sectors. We show that after removing the contributions of the hair modes from the microscopic partition functions, the 4d and 5d horizon partition functions agree. Special care is taken to present details on the smoothness analysis of hair modes for rotating black holes, thereby filling an essential gap in the literature.


Sign in / Sign up

Export Citation Format

Share Document