scholarly journals Multiplicative-accumulative matching of NLO calculations with parton showers

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Paolo Nason ◽  
Gavin P. Salam

Abstract We propose a new approach for combining next-to-leading order (NLO) and parton shower (PS) calculations so as to obtain three core features: (a) applicability to general showers, as with the MC@NLO and POWHEG methods; (b) positive-weight events, as with the KrkNLO and POWHEG methods; and (c) all showering attributed to the parton shower code, as with the MC@NLO and KrkNLO methods. This is achieved by using multiplicative matching in phase space regions where the shower overestimates the matrix element and accumulative (additive) matching in regions where the shower underestimates the matrix element, an approach that can be viewed as a combination of the MC@NLO and KrkNLO methods.

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
D. Maître ◽  
H. Truong

Abstract In this article we present a neural network based model to emulate matrix elements. This model improves on existing methods by taking advantage of the known factorisation properties of matrix elements. In doing so we can control the behaviour of simulated matrix elements when extrapolating into more singular regions than the ones used for training the neural network. We apply our model to the case of leading-order jet production in e+e− collisions with up to five jets. Our results show that this model can reproduce the matrix elements with errors below the one-percent level on the phase-space covered during fitting and testing, and a robust extrapolation to the parts of the phase-space where the matrix elements are more singular than seen at the fitting stage.


2012 ◽  
Vol 2012 (11) ◽  
Author(s):  
John M. Campbell ◽  
Walter T. Giele ◽  
Ciaran Williams

Author(s):  
Mauro Chiesa ◽  
Ansgar Denner ◽  
Jean-Nicolas Lang ◽  
Mathieu Pellen

Abstract In this article we present an event generator based on the Monte Carlo program Powheg in combination with the matrix-element generator Recola. We apply it to compute NLO electroweak corrections to same-sign W-boson scattering, which have been shown to be large at the LHC. The event generator allows for the generation of unweighted events including the effect of the NLO electroweak corrections matched to a QED parton shower and interfaced to a QCD parton shower. In view of the expected experimental precision of future measurements, the use of such a tool will be indispensable.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
M. I. Abdulhamid ◽  
M. A. Al-Mashad ◽  
A. Bermudez Martinez ◽  
G. Bonomelli ◽  
I. Bubanja ◽  
...  

AbstractThe azimuthal correlation, $$\Delta \phi _{12}$$ Δ ϕ 12 , of high transverse momentum jets in pp collisions at $$\sqrt{s}=13$$ s = 13  TeV is studied by applying PB-TMD distributions to NLO calculations via MCatNLO together with the PB-TMD parton shower. A very good description of the cross section as a function of $$\Delta \phi _{12}$$ Δ ϕ 12 is observed. In the back-to-back region of $${\Delta \phi _{12}}\rightarrow \pi $$ Δ ϕ 12 → π , a very good agreement is observed with the PB-TMD Set 2 distributions while significant deviations are obtained with the PB-TMD Set 1 distributions. Set 1 uses the evolution scale while Set 2 uses transverse momentum as an argument in $$\alpha _\mathrm {s}$$ α s , and the above observation therefore confirms the importance of an appropriate soft-gluon coupling in angular ordered parton evolution. The total uncertainties of the predictions are dominated by the scale uncertainties of the matrix element, while the uncertainties coming from the PB-TMDs and the corresponding PB-TMD shower are very small. The $$\Delta \phi _{12}$$ Δ ϕ 12 measurements are also compared with predictions using MCatNLO together Pythia8, illustrating the importance of details of the parton shower evolution.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Simon Plätzer ◽  
Ines Ruffa

Abstract We calculate the two-loop and one-loop/one-emission contributions required for soft gluon evolution at the next-to-leading order. The colour structures are expressed in the colour flow basis, and the kinematic dependence and loop integrals are expressed in terms of multiple cuts and phase-space-like integrals. This directly allows to use them in the resummation of non-global observables and improved parton shower algorithms beyond the leading order and beyond the leading colour limit. Within the colour flow basis it becomes apparent that correlations beyond a dipole picture emerge even in colour-diagonal elements of the virtual corrections.


2013 ◽  
Vol 87 (7) ◽  
Author(s):  
John M. Campbell ◽  
R. Keith Ellis ◽  
Walter T. Giele ◽  
Ciaran Williams

Sign in / Sign up

Export Citation Format

Share Document