scholarly journals Solution of quantum integrable systems from quiver gauge theories

2017 ◽  
Vol 2017 (2) ◽  
Author(s):  
Nick Dorey ◽  
Peng Zhao
2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Heng-Yu Chen ◽  
Taro Kimura ◽  
Norton Lee

Abstract In this note, we establish several interesting connections between the super- group gauge theories and the super integrable systems, i.e. gauge theories with supergroups as their gauge groups and integrable systems defined on superalgebras. In particular, we construct the super-characteristic polynomials of super-Toda lattice and elliptic double Calogero-Moser system by considering certain orbifolded instanton partition functions of their corresponding supergroup gauge theories. We also derive an exotic generalization of 𝔰𝔩(2) XXX spin chain arising from the instanton partition function of SQCD with super- gauge group, and study its Bethe ansatz equation.


1994 ◽  
Vol 100 (1) ◽  
pp. 874-878 ◽  
Author(s):  
A. Gorsky ◽  
N. Nekrasov

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Andrea Cavaglià ◽  
Nikolay Gromov ◽  
Fedor Levkovich-Maslyuk

Abstract The major simplification in a number of quantum integrable systems is the existence of special coordinates in which the eigenstates take a factorised form. Despite many years of studies, the basis realising the separation of variables (SoV) remains unknown in $$ \mathcal{N} $$ N = 4 SYM and similar models, even though it is widely believed they are integrable. In this paper we initiate the SoV approach for observables with nontrivial coupling dependence in a close cousin of $$ \mathcal{N} $$ N = 4 SYM — the fishnet 4D CFT. We develop the functional SoV formalism in this theory, which allows us to compute non-perturbatively some nontrivial observables in a form suitable for numerical evaluation. We present some applications of these methods. In particular, we discuss the possible SoV structure of the one-point correlators in presence of a defect, and write down a SoV-type expression for diagonal OPE coefficients involving an arbitrary state and the Lagrangian density operator. We believe that many of the findings of this paper can be applied in the $$ \mathcal{N} $$ N = 4 SYM case, as we speculate in the last part of the article.


1997 ◽  
Vol 11 (26n27) ◽  
pp. 3093-3124
Author(s):  
A. Marshakov

I consider main features of the formulation of the finite-gap solutions to integrable equations in terms of complex curves and generating 1-differential. The example of periodic Toda chain solutions is considered in detail. Recently found exact nonperturbative solutions to [Formula: see text] SUSY gauge theories are formulated using the methods of the theory of integrable systems and where possible the parallels between standard quantum field theory results and solutions to the integrable systems are discussed.


1995 ◽  
Vol 10 (40) ◽  
pp. 3113-3117 ◽  
Author(s):  
B. BASU-MALLICK ◽  
ANJAN KUNDU

An algebraic construction which is more general and closely connected with that of Faddeev,1 along with its application for generating different classes of quantum integrable models is summarized to complement the recent results of Ref. 1.


Sign in / Sign up

Export Citation Format

Share Document