scholarly journals Nonrelativistic conformal field theories in the large charge sector

2019 ◽  
Vol 2019 (2) ◽  
Author(s):  
S. M. Kravec ◽  
Sridip Pal
2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
G. Cuomo ◽  
A. Esposito ◽  
E. Gendy ◽  
A. Khmelnitsky ◽  
A. Monin ◽  
...  

Abstract At finite density, the spontaneous breakdown of an internal non-Abelian symmetry dictates, along with gapless modes, modes whose gap is fixed by the algebra and proportional to the chemical potential: the gapped Goldstones. Generically the gap of these states is comparable to that of other non-universal excitations or to the energy scale where the dynamics is strongly coupled. This makes it non-straightforward to derive a universal effective field theory (EFT) description realizing all the symmetries. Focusing on the illustrative example of a fully broken SU(2) group, we demonstrate that such an EFT can be constructed by carving out around the Goldstones, gapless and gapped, at small 3-momentum. The rules governing the EFT, where the gapless Goldstones are soft while the gapped ones are slow, are those of standard nonrelativistic EFTs, like for instance nonrelativistic QED. In particular, the EFT Lagrangian formally preserves gapped Goldstone number, and processes where such number is not conserved are described inclusively by allowing for imaginary parts in the Wilson coefficients. Thus, while the symmetry is manifestly realized in the EFT, unitarity is not. We comment on the application of our construction to the study of the large charge sector of conformal field theories with non-Abelian symmetries.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Zohar Komargodski ◽  
Márk Mezei ◽  
Sridip Pal ◽  
Avia Raviv-Moshe

Abstract Conformal Field Theories (CFTs) have rich dynamics in heavy states. We describe the constraints due to spontaneously broken boost and dilatation symmetries in such states. The spontaneously broken boost symmetries require the existence of new low-lying primaries whose scaling dimension gap, we argue, scales as O(1). We demonstrate these ideas in various states, including fluid, superfluid, mean field theory, and Fermi surface states. We end with some remarks about the large charge limit in 2d and discuss a theory of a single compact boson with an arbitrary conformal anomaly.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Gabriel Cuomo ◽  
Márk Mezei ◽  
Avia Raviv-Moshe

Abstract We study operators with large internal charge in boundary conformal field theories (BCFTs) with internal symmetries. Using the state-operator correspondence and the existence of a macroscopic limit, we find a non-trivial relation between the scaling dimension of the lowest dimensional CFT and BCFT charged operators to leading order in the charge. We also construct the superfluid effective field theory for theories with boundaries and use it to systematically calculate the BCFT spectrum in a systematic expansion. We verify explicitly many of the predictions from the EFT analysis in concrete examples including the classical conformal scalar field with a |ϕ|6 interaction in three dimensions and the O(2) Wilson-Fisher model near four dimensions in the presence of boundaries. In the appendices we additionally discuss a systematic background field approach towards Ward identities in general boundary and defect conformal field theories, and clarify its relation with Noether’s theorem in perturbative theories.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Enrico M. Brehm

Abstract We investigate perturbatively tractable deformations of topological defects in two-dimensional conformal field theories. We perturbatively compute the change in the g-factor, the reflectivity, and the entanglement entropy of the conformal defect at the end of these short RG flows. We also give instances of such flows in the diagonal Virasoro and Super-Virasoro Minimal Models.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Hugo A. Camargo ◽  
Lucas Hackl ◽  
Michal P. Heller ◽  
Alexander Jahn ◽  
Tadashi Takayanagi ◽  
...  

2000 ◽  
Vol 15 (30) ◽  
pp. 4857-4870 ◽  
Author(s):  
D. C. CABRA ◽  
E. FRADKIN ◽  
G. L. ROSSINI ◽  
F. A. SCHAPOSNIK

We propose an effective Lagrangian for the low energy theory of the Pfaffian states of the fractional quantum Hall effect in the bulk in terms of non-Abelian Chern–Simons (CS) actions. Our approach exploits the connection between the topological Chern–Simons theory and chiral conformal field theories. This construction can be used to describe a large class of non-Abelian FQH states.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Nishant Gupta ◽  
Nemani V. Suryanarayana

Abstract We construct classical theories for scalar fields in arbitrary Carroll spacetimes that are invariant under Carrollian diffeomorphisms and Weyl transformations. When the local symmetries are gauge fixed these theories become Carrollian conformal field theories. We show that generically there are at least two types of such theories: one in which only time derivatives of the fields appear and the other in which both space and time derivatives appear. A classification of such scalar field theories in three (and higher) dimensions up to two derivative order is provided. We show that only a special case of our theories arises in the ultra-relativistic limit of a covariant parent theory.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Marko Medenjak ◽  
Giuseppe Policastro ◽  
Takato Yoshimura

Sign in / Sign up

Export Citation Format

Share Document