scholarly journals Area law of connected correlation function in higher dimensional conformal field theory

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Jiang Long

Abstract We present a new area law which is associated with the correlator of OPE blocks in higher dimensional conformal field theories (CFTs). The area law shows similar behaviour as black hole entropy or geometric entanglement entropy. It includes a leading term which is proportional to the area of the entanglement surface, and a logarithmic subleading term with degree q. We extract the UV cutoff independent coefficients and discuss various properties of the coefficients.

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Jin-Yi Pang ◽  
Jiunn-Wei Chen

AbstractThe renormalization of entanglement entropy of quantum field theories is investigated in the simplest setting with a λϕ4 scalar field theory. The 3+1 dimensional spacetime is separated into two regions by an infinitely flat 2-dimensional interface. The entanglement entropy of the system across the interface has an elegant geometrical interpretation using the replica trick, which requires putting the field theory on a curved spacetime background. We demonstrate that the theory, and hence the entanglement entropy, is renormalizable at order λ once all the relevant operators up to dimension 4 are included in the action. This exercise has a one-to-one correspondence to entanglement entropy interpretation of the black hole entropy which suggests that our treatment is sensible. Our study suggests that entanglement entropy is renormalizable and is a physical quantity.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Dharm Veer Singh ◽  
Sanjay Siwach

We study the entanglement entropy of fermion fields in BTZ black hole space-time and calculate prefactor of the leading and subleading terms and logarithmic divergence term of the entropy using the discretized model. The leading term is the standard Bekenstein-Hawking area law and subleading term corresponds to first quantum corrections in black hole entropy. We also investigate the corrections to entanglement entropy for massive fermion fields in BTZ space-time. The mass term does not affect the area law.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Enrico M. Brehm

Abstract We investigate perturbatively tractable deformations of topological defects in two-dimensional conformal field theories. We perturbatively compute the change in the g-factor, the reflectivity, and the entanglement entropy of the conformal defect at the end of these short RG flows. We also give instances of such flows in the diagonal Virasoro and Super-Virasoro Minimal Models.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Zohar Komargodski ◽  
Márk Mezei ◽  
Sridip Pal ◽  
Avia Raviv-Moshe

Abstract Conformal Field Theories (CFTs) have rich dynamics in heavy states. We describe the constraints due to spontaneously broken boost and dilatation symmetries in such states. The spontaneously broken boost symmetries require the existence of new low-lying primaries whose scaling dimension gap, we argue, scales as O(1). We demonstrate these ideas in various states, including fluid, superfluid, mean field theory, and Fermi surface states. We end with some remarks about the large charge limit in 2d and discuss a theory of a single compact boson with an arbitrary conformal anomaly.


2014 ◽  
Vol 90 (4) ◽  
Author(s):  
Song He ◽  
Tokiro Numasawa ◽  
Tadashi Takayanagi ◽  
Kento Watanabe

2009 ◽  
Vol 24 (32) ◽  
pp. 6197-6222 ◽  
Author(s):  
YU NAKAYAMA

We study scale invariant but not necessarily conformal invariant deformations of nonrelativistic conformal field theories from the dual gravity viewpoint. We present the corresponding metric that solves the Einstein equation coupled with a massive vector field. We find that, within the class of metric we study, when we assume the Galilean invariance, the scale invariant deformation always preserves the nonrelativistic conformal invariance. We discuss applications to scaling regime of Reggeon field theory and nonlinear quantum finance. These theories possess scale invariance but may or may not break the conformal invariance, depending on the underlying symmetry assumptions.


2003 ◽  
Vol 18 (25) ◽  
pp. 4497-4591 ◽  
Author(s):  
MICHAEL A. I. FLOHR

These are notes of my lectures held at the first School & Workshop on Logarithmic Conformal Field Theory and its Applications, September 2001 in Tehran, Iran. These notes cover only selected parts of the by now quite extensive knowledge on logarithmic conformal field theories. In particular, I discuss the proper generalization of null vectors towards the logarithmic case, and how these can be used to compute correlation functions. My other main topic is modular invariance, where I discuss the problem of the generalization of characters in the case of indecomposable representations, a proposal for a Verlinde formula for fusion rules and identities relating the partition functions of logarithmic conformal field theories to such of well known ordinary conformal field theories. The two main topics are complemented by some remarks on ghost systems, the Haldane-Rezayi fractional quantum Hall state, and the relation of these two to the logarithmic c=-2 theory.


Sign in / Sign up

Export Citation Format

Share Document