scholarly journals Fermion Fields in BTZ Black Hole Space-Time and Entanglement Entropy

2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Dharm Veer Singh ◽  
Sanjay Siwach

We study the entanglement entropy of fermion fields in BTZ black hole space-time and calculate prefactor of the leading and subleading terms and logarithmic divergence term of the entropy using the discretized model. The leading term is the standard Bekenstein-Hawking area law and subleading term corresponds to first quantum corrections in black hole entropy. We also investigate the corrections to entanglement entropy for massive fermion fields in BTZ space-time. The mass term does not affect the area law.

2014 ◽  
Vol 24 (01) ◽  
pp. 1550001 ◽  
Author(s):  
Dharm Veer Singh

We study the quantum scalar field in the background of BTZ black hole and evaluate the entanglement entropy of the nonvacuum states. The entropy is proportional to the area of event horizon for the ground state, but the area law is violated in the case of nonvacuum states (first excited state and mixed states) and the corrections scale as power law.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Jiang Long

Abstract We present a new area law which is associated with the correlator of OPE blocks in higher dimensional conformal field theories (CFTs). The area law shows similar behaviour as black hole entropy or geometric entanglement entropy. It includes a leading term which is proportional to the area of the entanglement surface, and a logarithmic subleading term with degree q. We extract the UV cutoff independent coefficients and discuss various properties of the coefficients.


2017 ◽  
Vol 26 (04) ◽  
pp. 1750038 ◽  
Author(s):  
Dharm Veer Singh ◽  
Shobhit Sachan

The entanglement entropy correlates two quantum subsystems which are part of a larger system. A logarithmic divergence term present in the entanglement entropy is universal in nature and directly proportional to the conformal anomaly. We study this logarithmic divergence term of entropy for massive scalar field in [Formula: see text] dimensions by applying numerical techniques to entanglement entropy approach. This (2+1)-dimensional massive theory can be obtained from the (3+1)-dimensional massless scalar field via dimensional reduction. We also calculated mass corrections to entanglement entropy for scalar field. Finally, we observe that the area law contribution to the entanglement entropy is not affected by this mass term and the universal quantities depend upon the basic properties of the system.


2008 ◽  
Vol 77 (6) ◽  
Author(s):  
Tatsuo Azeyanagi ◽  
Tatsuma Nishioka ◽  
Tadashi Takayanagi

2010 ◽  
Vol 25 (38) ◽  
pp. 3213-3218 ◽  
Author(s):  
WONTAE KIM ◽  
DAEHO LEE

We study the bound of the noncommutativity parameter in the noncommutative Schwarzschild black hole which is a solution of the noncommutative ISO(3, 1) Poincaré gauge group. The statistical entropy satisfying the area law in the brick wall method yields a cutoff relation which depends on the noncommutativity parameter. Requiring both the cutoff parameter and the noncommutativity parameter to be real, the noncommutativity parameter can be shown to be bounded as Θ > 8.4 × 10-2lp.


2009 ◽  
Vol 24 (18n19) ◽  
pp. 3414-3425 ◽  
Author(s):  
PARTHASARATHI MAJUMDAR

The issues of holography and possible links with gauge theories in spacetime physics is discussed, in an approach quite distinct from the more restricted AdS-CFT correspondence. A particular notion of holography in the context of black hole thermodynamics is derived (rather than conjectured) from rather elementary considerations, which also leads to a criterion of thermal stability of radiant black holes, without resorting to specific classical metrics. For black holes that obey this criterion, the canonical entropy is expressed in terms of the microcanonical entropy of an Isolated Horizon which is essentially a local generalization of the very global event horizon and is a null inner boundary of spacetime, with marginal outer trapping. It is argued why degrees of freedom on this horizon must be described by a topological gauge theory. Quantizing this boundary theory leads to the microcanonical entropy of the horizon expressed in terms of an infinite series asymptotic in the cross-sectional area, with the leading 'area-law' term followed by finite, unambiguously calculable corrections arising from quantum spacetime fluctuations.


1998 ◽  
Vol 13 (23) ◽  
pp. 1875-1879 ◽  
Author(s):  
RICHARD J. EPP ◽  
R. B. MANN

If one encodes the gravitational degrees of freedom in an orthonormal frame field, there is a very natural first-order action one can write down (which in four dimensions is known as the Goldberg action). In this letter we will show that this action contains a boundary action for certain microscopic degrees of freedom living at the horizon of a black hole, and argue that these degrees of freedom hold great promise for explaining the microstates responsible for black hole entropy, in any number of space–time dimensions. This approach faces many interesting challenges, both technical and conceptual.


Sign in / Sign up

Export Citation Format

Share Document