scholarly journals Search for physics beyond the standard model in multilepton final states in proton-proton collisions at s$$ \sqrt{s} $$ = 13 TeV

2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
A. M. Sirunyan ◽  
◽  
A. Tumasyan ◽  
W. Adam ◽  
F. Ambrogi ◽  
...  
2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
A. M. Sirunyan ◽  
◽  
A. Tumasyan ◽  
W. Adam ◽  
T. Bergauer ◽  
...  

Abstract A search for phenomena beyond the standard model in final states with two oppositely charged same-flavor leptons and missing transverse momentum is presented. The search uses a data sample of proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV, corresponding to an integrated luminosity of 137 fb−1, collected by the CMS experiment at the LHC. Three potential signatures of physics beyond the standard model are explored: an excess of events with a lepton pair, whose invariant mass is consistent with the Z boson mass; a kinematic edge in the invariant mass distribution of the lepton pair; and the nonresonant production of two leptons. The observed event yields are consistent with those expected from standard model backgrounds. The results of the first search allow the exclusion of gluino masses up to 1870 GeV, as well as chargino (neutralino) masses up to 750 (800) GeV, while those of the searches for the other two signatures allow the exclusion of light-flavor (bottom) squark masses up to 1800 (1600) GeV and slepton masses up to 700 GeV, respectively, at 95% confidence level within certain supersymmetry scenarios.


2021 ◽  
Vol 36 (01) ◽  
pp. 2141012
Author(s):  
Eric Conte ◽  
Robin Ducrocq

In this paper, we present the MadAnalysis 5 implementation of the CMS-EXO-19-002 analysis, probing an excess of events featuring multiple charged leptons in LHC proton–proton collisions at [Formula: see text]. The original analysis is based on data acquired by the CMS detector during the 2016–2018 campaign, which corresponds to an integrated luminosity of 137 fb[Formula: see text]. Data have been tested against hypothetical extensions of the Standard Model where additional leptons can stem from new heavy fermion decays or from new light scalar/pseudoscalar decays. The CMS selection has been fully implemented in the MadAnalysis 5 platform and successfully validated by reproducing official results in the form of signal distributions at the end of the selection.


Author(s):  
A. M. Sirunyan ◽  
◽  
A. Tumasyan ◽  
W. Adam ◽  
F. Ambrogi ◽  
...  

AbstractTwo related searches for phenomena beyond the standard model (BSM) are performed using events with hadronic jets and significant transverse momentum imbalance. The results are based on a sample of proton–proton collisions at a center-of-mass energy of $$13\,\text {Te}\text {V} $$13Te, collected by the CMS experiment at the LHC in 2016–2018 and corresponding to an integrated luminosity of 137$$\,\text {fb}^{-1}$$fb-1. The first search is inclusive, based on signal regions defined by the hadronic energy in the event, the jet multiplicity, the number of jets identified as originating from bottom quarks, and the value of the kinematic variable $$M_{\mathrm {T2}}$$MT2 for events with at least two jets. For events with exactly one jet, the transverse momentum of the jet is used instead. The second search looks in addition for disappearing tracks produced by BSM long-lived charged particles that decay within the volume of the tracking detector. No excess event yield is observed above the predicted standard model background. This is used to constrain a range of BSM models that predict the following: the pair production of gluinos and squarks in the context of supersymmetry models conserving R-parity, with or without intermediate long-lived charginos produced in the decay chain; the resonant production of a colored scalar state decaying to a massive Dirac fermion and a quark; or the pair production of scalar and vector leptoquarks each decaying to a neutrino and a top, bottom, or light-flavor quark. In most of the cases, the results obtained are the most stringent constraints to date.


2015 ◽  
Vol 30 (31) ◽  
pp. 1546009 ◽  
Author(s):  
Konstantinos Kousouris

Jet observables have been exploited extensively during the LHC Run 1 to search for physics beyond the Standard Model. In this article, the most recent results from the ATLAS and CMS collaborations are summarized. Data from proton–proton collisions at 7 and 8 TeV center-of-mass energy have been analyzed to study monojet, dijet, and multijet final states, searching for a variety of new physics signals that include colored resonances, contact interactions, extra dimensions, and supersymmetric particles. The exhaustive searches with jets in Run 1 did not reveal any signal, and the results were used to put stringent exclusion limits on the new physics models.


Sign in / Sign up

Export Citation Format

Share Document