missing transverse energy
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 15)

H-INDEX

26
(FIVE YEARS 2)

2022 ◽  
Vol 82 (1) ◽  
Author(s):  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
K. Abeling ◽  
...  

AbstractDuring LHC Run 2 (2015–2018) the ATLAS Level-1 topological trigger allowed efficient data-taking by the ATLAS experiment at luminosities up to 2.1$$\times $$ × 10$$^{34}$$ 34  cm$$^{-2}$$ - 2 s$$^{-1}$$ - 1 , which exceeds the design value by a factor of two. The system was installed in 2016 and operated in 2017 and 2018. It uses Field Programmable Gate Array processors to select interesting events by placing kinematic and angular requirements on electromagnetic clusters, jets, $$\tau $$ τ -leptons, muons and the missing transverse energy. It allowed to significantly improve the background event rejection and signal event acceptance, in particular for Higgs and B-physics processes.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Linda M. Carpenter ◽  
Taylor Murphy ◽  
Matthew J. Smylie

Abstract We reinterpret two recent LHC searches for events containing four top quarks $$ \left(t\overline{t}t\overline{t}\right) $$ t t ¯ t t ¯ in the context of supersymmetric models with Dirac gauginos and color-octet scalars (sgluons). We explore whether sgluon contributions to the four-top production cross section $$ \sigma \left( pp\to t\overline{t}t\overline{t}\right) $$ σ pp → t t ¯ t t ¯ can accommodate an excess of four-top events recently reported by the ATLAS collaboration. We also study constraints on these models from an ATLAS search for new phenomena with high jet multiplicity and significant missing transverse energy $$ \left({E}_{\mathrm{T}}^{\mathrm{miss}}\right) $$ E T miss sensitive to signals with four top quarks. We find that these two analyses provide complementary constraints, with the jets + $$ {E}_{\mathrm{T}}^{\mathrm{miss}} $$ E T miss search exceeding the four-top cross section measurement in sensitivity for sgluons heavier than about 800 GeV. We ultimately find that either a scalar or a pseudoscalar sgluon can currently fit the ATLAS excess in a range of reasonable benchmark scenarios, though a pseudoscalar in minimal Dirac gaugino models is ruled out. We finally offer sensitivity projections for these analyses at the HL-LHC, mapping the 5σ discovery potential in sgluon parameter space and computing exclusion limits at 95% CL in scenarios where no excess is found.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Yi Liu ◽  
Stefano Moretti ◽  
Harri Waltari

Abstract We study the possibility of measuring neutrino Yukawa couplings in the Next-to-Minimal Supersymmetric Standard Model with right-handed neutrinos (NMSSMr) when the lightest right-handed sneutrino is the Dark Matter (DM) candidate, by exploiting a ‘dijet + dilepton + Missing Transverse Energy’ (MET or "Image missing") signature. We show that, contrary to the miminal realisation of Supersymmetry (SUSY), the MSSM, wherein the DM candidate is typically a much heavier (fermionic) neutralino state, this extended model of SUSY offers one with a much lighter (bosonic) state as DM that can then be produced at the next generation of e+e− colliders with energies up to 500 GeV or so. The ensuing signal, energing from chargino pair production and subsequent decay, is extremely pure so it also affords one with the possibility of extracting the Yukawa parameters of the (s)neutrino sector. Altogether, our results serve the purpose of motivating searches for light DM signals at such machines, where the DM candidate can have a mass around the Electro-Weak (EW) scale.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Indrani Chakraborty ◽  
Dilip Kumar Ghosh ◽  
Nivedita Ghosh ◽  
Santosh Kumar Rai

AbstractWe study the $$S_3$$ S 3 -symmetric two Higgs doublet model by adding two generations of vector like leptons (VLL) which are odd under a discrete $$Z_2$$ Z 2 -symmetry. The lightest neutral component of the VLL acts as a dark matter (DM) whereas the full VLL set belongs to a dark sector with no mixings allowed with the standard model fermions. We analyse the model in light of dark matter and collider searches. We show that the DM is compatible with the current relic density data as well as satisfying all direct and indirect dark matter search constraints. We choose some representative points in the model parameter space allowed by all aforementioned dark matter constraints and present a detailed collider analysis of multi-lepton signals viz. the mono-lepton, di-lepton, tri-lepton and four-lepton along with missing transverse energy in the final state using both the cut-based analysis and multivariate analysis respectively at the high luminosity 14 TeV LHC run.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ulrich Haisch ◽  
Giacomo Polesello

Abstract Given the hints of lepton-flavour non-universality in B-meson decays, leptoquarks (LQs) are enjoying a renaissance. We propose novel Large Hadron Collider (LHC) searches for such hypothetical states that do not rely on strong production only, but can also receive important contributions from quark-lepton annihilation. For the cases of a resonant signal involving a bottom quark and a tau lepton (b + τ), a top quark and missing transverse energy ($$ {E}_T^{\mathrm{miss}} $$ E T miss ) and light-flavour jets plus $$ {E}_T^{\mathrm{miss}} $$ E T miss , we develop realistic analysis strategies and provide detailed evaluations of the achievable sensitivities for the corresponding LQ signatures at future LHC runs. Our analyses allow us to derive a series of stringent constraints on the masses and couplings of third-generation singlet vector LQs, showing that at LHC Run III and the high-luminosity LHC the proposed search channels can probe interesting parts of the LQ parameter space addressing the B-physics anomalies. In view of the reach of the proposed b + τ signature, we recommend that dedicated resonance searches for this final state should be added to the exotics search canon of both ATLAS and CMS.


2021 ◽  
Vol 251 ◽  
pp. 03018
Author(s):  
Daniel Scheirich ◽  

The ATLAS Tile Calorimeter (TileCal) is the central part of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. The readout is segmented into nearly 10000 channels that are calibrated by means of Cesium source, laser, charge injection, and integratorbased systems. The data quality (DQ) relies on extensive monitoring of both collision and calibration data. Automated checks are performed on a set of pre-defined histograms and results are summarized in dedicated web pages. A set of tools is then used by the operators for further inspection of the acquired data with the goal of spotting the origins of problems or other irregularities. Consequently, the TileCal conditions data (calibration constants, channel statuses etc) are updated in databases that are used for the data-reprocessing, or serve as an important input for the maintenance works during the shutdown periods. This talk reviews the software tools used for the DQ monitoring with emphasis on recent developments aiming to integrate all tools into a single platform.


2020 ◽  
pp. 2141007
Author(s):  
Malte Mrowietz ◽  
Sam Bein ◽  
Jory Sonneveld

We present the MadAnalysis 5 implementation and validation of the analysis Search for supersymmetry in proton-proton collisions at 13 TeV in final states with jets and missing transverse momentum (CMS-SUS-19-006). The search targets signatures with at least two jets and large missing transverse momentum in the all-hadronic final state. The analyzed luminosity is 137 fb[Formula: see text], corresponding to the Run 2 proton-proton data set recorded by the CMS detector at 13 TeV. This implementation has been validated in a variety of simplified models, by comparing derived cut flow tables and histograms with information provided by the CMS collaboration, using event samples that we simulated for the purpose of this re-implementation study. The validation is found to reproduce the signal acceptance in most cases.


2020 ◽  
pp. 2141010
Author(s):  
Jack Y. Araz ◽  
Benjamin Fuks

We present the implementation, in the MadAnalysis 5 framework, of the ATLAS-SUSY-2018-31 search for new physics, and document the validation of this implementation. This analysis targets, with 139 fb[Formula: see text] of proton–proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector between 2015 and 2018, the production of a pair of supersymmetric bottom squarks when they further decay through a cascade decay involving the second lightest neutralino and a Standard Model Higgs boson. The validation of our work is based on three benchmark scenarios targeting different kinematic configurations. The first of them considers a new physics spectrum leading to the presence of high-[Formula: see text] [Formula: see text]-jets originating from sbottom decays, whereas the last two, that differ by the neutralino mass spectrum, are dedicated to the compressed regime and thus yield the presence of soft [Formula: see text]-jets in the final state. We obtain an agreement between the MadAnalysis 5 predictions and the official ATLAS results at the level of 20–30%, the largest discrepancies being related to cases exhibiting a poor Monte Carlo numerical precision at the level of the official ATLAS results.


2020 ◽  
pp. 2141005
Author(s):  
Jack Y. Araz ◽  
Benjamin Fuks

We present the implementation in MadAnalysis 5 of the ATLAS-SUSY-2018-32 search for new physics and document the validation of this re-implementation. This analysis targets, with 139 fb[Formula: see text] of proton–proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector, the electroweak pair production of supersymmetric charginos and sleptons when they further decay into a final state comprising a pair of leptons and missing energy. The validation of our work is based on three [Formula: see text]-parity conserving supersymmetric benchmark setups that feature, respectively, chargino pair-production followed by decays into leptons via an intermediate weak boson, chargino pair-production followed by chargino cascade decays into leptons through a slepton mediator, and slepton pair-production followed by slepton direct decays into leptons.


2020 ◽  
pp. 2141006
Author(s):  
Mark D. Goodsell

This is the validation note for the recast in MadAnalysis 5 of the study ATLAS-SUSY-2019-08: a search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two [Formula: see text]-jets in [Formula: see text] collisions at [Formula: see text] = 13 TeV with the ATLAS detector, using an integrated luminosity of 139 fb[Formula: see text]. The recasting code is validated against cutflows and expected signal events for benchmark scenarios, and the exclusion limits are reproduced for a simplified supersymmetric electroweakino sector consisting of a degenerate wino decaying to a light stable bino.


Sign in / Sign up

Export Citation Format

Share Document