scholarly journals Singular BPS boundary conditions in $$ \mathcal{N} $$ = (2, 2) supersymmetric gauge theories

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Tadashi Okazaki ◽  
Douglas J. Smith

Abstract We derive general BPS boundary conditions in two-dimensional $$ \mathcal{N} $$ N = (2, 2) supersymmetric gauge theories. We analyze the solutions of these boundary conditions, and in particular those that allow the bulk fields to have poles at the boundary. We also present the brane configurations for the half- and quarter-BPS boundary conditions of the $$ \mathcal{N} $$ N = (2, 2) supersymmetric gauge theories in terms of branes in Type IIA string theory. We find that both A-type and B-type brane configurations are lifted to M-theory as a system of M2-branes ending on an M5-brane wrapped on a product of a holomorphic curve in ℂ2 with a special Lagrangian 3-cycle in ℂ3.

2013 ◽  
Vol 28 (28) ◽  
pp. 1330044 ◽  
Author(s):  
DOMENICO ORLANDO ◽  
SUSANNE REFFERT

The fluxtrap background of string theory provides a transparent and algorithmic way of constructing supersymmetric gauge theories with both mass and Ω-type deformations in various dimensions. In this paper, we review a number of deformed supersymmetric gauge theories in two and four dimensions which can be obtained via the fluxtrap background from string or M-theory. Such theories, the most well-known being Ω-deformed super-Yang–Mills theory in four dimensions, have met with a lot of interest in the recent literature. The string theory treatment offers many new avenues of analysis and applications, such as for example the study of the gravity duals for deformed [Formula: see text] gauge theories.


2008 ◽  
Vol 2008 (12) ◽  
pp. 054-054 ◽  
Author(s):  
Daniel Areán ◽  
Paolo Merlatti ◽  
Carlos Núñez ◽  
Alfonso V Ramallo

2010 ◽  
Vol 2010 ◽  
pp. 1-30 ◽  
Author(s):  
Amihay Hanany ◽  
Alberto Zaffaroni

We give a short review on the study of the moduli space and the spectrum of chiral operators for gauge theories living on branes at singularities. We focus on theories with four real supercharges in 3+1 and 2+1 dimensions. The theories are holographically dual toAdS5×H5orAdS4×H7backgrounds, in Type-IIB or -M theory, respectively. We demonstrate that most of the information on the moduli space and spectrum of the quiver gauge theories is encoded in the concept of the “Master Space”, which is roughly the full moduli space for one brane, consisting of mesonic and baryonic degrees of freedom. We summarize the relevant information in generating functions for chiral operators, which can be computed using plethystics techniques and the language of complex geometry.


1999 ◽  
Vol 560 (1-3) ◽  
pp. 66-92 ◽  
Author(s):  
Ralph Blumenhagen ◽  
Anamaría Font ◽  
Dieter Lüst

2001 ◽  
Vol 2001 (05) ◽  
pp. 058-058 ◽  
Author(s):  
Peter Kaste ◽  
Hervé Partouche ◽  
Alexandros Kehagias

1998 ◽  
Vol 416 (3-4) ◽  
pp. 319-326 ◽  
Author(s):  
Soonkeon Nam ◽  
Kyungho Oh ◽  
Sang-Jin Sin

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Oren Bergman ◽  
Diego Rodríguez-Gómez

Abstract We use 5-brane webs to study the two-dimensional space of supersymmetric mass deformations of higher rank generalizations of the 5d E1 and $$ {\tilde{E}}_1 $$ E ˜ 1 theories. Some of the resulting IR phases are described by IR free supersymmetric gauge theories, while others correspond to interacting fixed points. The number of different phases appears to grow with the rank. The space of deformations is qualitatively different for the even and odd rank cases, but that of the even (odd) rank E1 theory is similar to that of the odd (even) rank $$ {\tilde{E}}_1 $$ E ˜ 1 theory. One result of our analysis predicts that the supersymmetric SU(N) theory with CS level k = $$ \frac{N}{2} $$ N 2 + 4 and a single massless antisymmetric hypermultiplet exhibits an enhanced global symmetry at the UV fixed point, given by SU(2) × SU(2) if N is even, and SU(2) × U(1) if N is odd.


Sign in / Sign up

Export Citation Format

Share Document