scholarly journals Phases of supersymmetric gauge theories from M-theory on G2 manifolds

2001 ◽  
Vol 2001 (05) ◽  
pp. 058-058 ◽  
Author(s):  
Peter Kaste ◽  
Hervé Partouche ◽  
Alexandros Kehagias
2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Tadashi Okazaki ◽  
Douglas J. Smith

Abstract We derive general BPS boundary conditions in two-dimensional $$ \mathcal{N} $$ N = (2, 2) supersymmetric gauge theories. We analyze the solutions of these boundary conditions, and in particular those that allow the bulk fields to have poles at the boundary. We also present the brane configurations for the half- and quarter-BPS boundary conditions of the $$ \mathcal{N} $$ N = (2, 2) supersymmetric gauge theories in terms of branes in Type IIA string theory. We find that both A-type and B-type brane configurations are lifted to M-theory as a system of M2-branes ending on an M5-brane wrapped on a product of a holomorphic curve in ℂ2 with a special Lagrangian 3-cycle in ℂ3.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Max Hübner

Abstract M-theory on local G2-manifolds engineers 4d minimally supersymmetric gauge theories. We consider ALE-fibered G2-manifolds and study the 4d physics from the view point of a partially twisted 7d supersymmetric Yang-Mills theory and its Higgs bundle. Euclidean M2-brane instantons descend to non-perturbative effects of the 7d supersymmetric Yang-Mills theory, which are found to be in one to one correspondence with the instantons of a colored supersymmetric quantum mechanics. We compute the contributions of M2-brane instantons to the 4d superpotential in the effective 7d description via localization in the colored quantum mechanics. Further we consider non-split Higgs bundles and analyze their 4d spectrum.


2010 ◽  
Vol 2010 ◽  
pp. 1-30 ◽  
Author(s):  
Amihay Hanany ◽  
Alberto Zaffaroni

We give a short review on the study of the moduli space and the spectrum of chiral operators for gauge theories living on branes at singularities. We focus on theories with four real supercharges in 3+1 and 2+1 dimensions. The theories are holographically dual toAdS5×H5orAdS4×H7backgrounds, in Type-IIB or -M theory, respectively. We demonstrate that most of the information on the moduli space and spectrum of the quiver gauge theories is encoded in the concept of the “Master Space”, which is roughly the full moduli space for one brane, consisting of mesonic and baryonic degrees of freedom. We summarize the relevant information in generating functions for chiral operators, which can be computed using plethystics techniques and the language of complex geometry.


2013 ◽  
Vol 28 (28) ◽  
pp. 1330044 ◽  
Author(s):  
DOMENICO ORLANDO ◽  
SUSANNE REFFERT

The fluxtrap background of string theory provides a transparent and algorithmic way of constructing supersymmetric gauge theories with both mass and Ω-type deformations in various dimensions. In this paper, we review a number of deformed supersymmetric gauge theories in two and four dimensions which can be obtained via the fluxtrap background from string or M-theory. Such theories, the most well-known being Ω-deformed super-Yang–Mills theory in four dimensions, have met with a lot of interest in the recent literature. The string theory treatment offers many new avenues of analysis and applications, such as for example the study of the gravity duals for deformed [Formula: see text] gauge theories.


1998 ◽  
Vol 416 (3-4) ◽  
pp. 319-326 ◽  
Author(s):  
Soonkeon Nam ◽  
Kyungho Oh ◽  
Sang-Jin Sin

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Thomas T. Dumitrescu ◽  
Temple He ◽  
Prahar Mitra ◽  
Andrew Strominger

Abstract We establish the existence of an infinite-dimensional fermionic symmetry in four-dimensional supersymmetric gauge theories by analyzing semiclassical photino dynamics in abelian $$ \mathcal{N} $$ N = 1 theories with charged matter. The symmetry is parametrized by a spinor-valued function on an asymptotic S2 at null infinity. It is not manifest at the level of the Lagrangian, but acts non-trivially on physical states, and its Ward identity is the soft photino theorem. The infinite-dimensional fermionic symmetry resides in the same $$ \mathcal{N} $$ N = 1 supermultiplet as the physically non-trivial large gauge symmetries associated with the soft photon theorem.


2021 ◽  
Vol 104 (2) ◽  
Author(s):  
M. D. Kuzmichev ◽  
N. P. Meshcheriakov ◽  
S. V. Novgorodtsev ◽  
I. E. Shirokov ◽  
K. V. Stepanyantz

Sign in / Sign up

Export Citation Format

Share Document